

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

TA 545.S66a
Smithsonian geographical tables,

31924004444042

Smithsonian fiticellaneous dollections

SMITHSONIAN

GEOGRAPHICAL TABLES

PREPARED BY

R. S. WOODWARD

THIRD EDITION

CITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION
1906

The Riverszide Press, Cambridge, Mass., U. S. A. Electrotyped and Printed by H. O. Houghton \& Ce

ADVERTISEMENT TO THIRD EDITION.

The second edition of the Smithsonian Geographical Tables issued in 1897 having become exhausted, a third edition is now printed with a few necessary changes made in the plates.

Richard Rathbun, Acting Secretary.
Smithsonian Institution, Washington City, August 6, 1906 .

ADVERTISEMENT TO SECOND EDITION.

The edition of the Smithsonian Geographical Tables issued in 1894 having become exhausted, a second edition is now printed with a few necessary changes made in the plates.

S. P. Langley,
Secretary.

[^0]
ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was published in 1852 as a volume of the Miscellaneous Collections.

A second edition was published in 1857, and a third edition, with further amendments, in 1859.

Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by meteorologists and physicists that, after twenty-five years of valuable service, the work was again revised, and a fourth edition was published in 1884.

In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish the new work in three parts : Meteorological Tables, Geographical Tables, and Physical Tables, each representative of the latest knowledge in its field, and independent of the others ; but the three forming a homogeneous series.

Although thus historically related to Doctor Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation, that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893 . The present volume, forming the second of the series, the Geographical Tables, has been prepared by Professor R. S. Woodward, formerly of the United States Coast and Geodetic Survey, but now of Columbia College, New York, who has brought to the work a very wide experience both in field work and in the reduction of extensive geodetic observations.

S. P. Langley, Secretary.

PREFACE.

In the preparation of the following work two difficulties of quite different kinds presented themselves. The first of these was to make a judicious selection of matter suited to the needs of the average geographer, and at the same time to keep the volume within prescribed limits. Of the vast amount of material available, much must be omitted from any work of limited dimensions, and it was essential to adopt some rule of discrimination. The rule adopted and adhered to, so far as practicable, was to incorporate little material already accessible in good form elsewhere, Accordingly, while numerous references are made in the volume to such accessible material, an attempt has been made wherever feasible to introduce new matter, or matter not hitherto generally available.

The second difficulty arose from the present uncertainty in the relation of the British and metric units of length, or rather from the absence of any generally adopted ratio of the British yard to the metre. The dimensions of the earth adopted for the tables are those of General Clarke, published in 1866, and now most commonly used in geodesy. These dimensions are expressed in English feet, and in order to convert them into metres it is necessary to adopt a ratio of the foot to the metre. The ratio used by General Clarke, and hitherto generally used, is now known to be erroneous by about one one hundred thousandth part. The ratio used in this volume is that adopted provisionally by the Office of Standard Weights and Measures of the United States and legalized by Act of Congress in $\mathbf{1 8 6 6}$. But inasmuch as a precise determination of this ratio is now in progress under the auspices of the International Bureau of Weights and Measures, and inasmuch as the value for the ratio found by this Bureau will doubtless be generally adopted, it has been thought best in the present edition to restrict quantities expressed in metric measures to limits which will require no change from the uncertainty in question. In conformity with this decision the dimensions of the earth are given in feet only, and, with a few unimportant exceptions, to which attention is called in the proper places, tables giving quantities in metres are limited to such a number of figures as are definitely known.

It is a matter of regret that, owing to the cause just stated, less prominence has been given in the tables to metric than to British units of length. On the other hand, it seems probable that the more general use of British units will meet the approval of the majority of those for whose use the volume is designed.

The introductory part of the volume is divided into seven sections under the heads, Useful Formulas, Mensuration, Units, Geodesy, Astronomy, Theory of Errors, and Explanation of Source and Use of Tables, respectively. In pre senting the subjects embraced under the first six of these headings an attempt was made to give only those features leading, directly to practical applications of the principles involved. It is hoped, however, that enough has been given of each subject to render the work of value in a broader sense to those who may desire to go beyond mere applications.

The most of the calculations required in the preparation of the tables were made by Mr. Charles H. Kummell and Mr. B. C. Washington, Jr. Their work was done with skill and fidelity, and it is believed that the systematic checks applied by them have rendered the tables they computed entirely trustworthy. Mention of the particular tables computed by each of them is made in the Explanation of Source and Use of Tables, where full credit is given also for data not specially prepared for the volume.

The Appendix to the present volume is that prepared by Mr. George E. Curtis for the Meteorological Tables. Its usefulness to the geographer is no less obvious and general than to the meteorologist.

The proofs have been read independently by Mr. Charles H . Kummell and the editor. The plate proofs, also, have been read by the editor ; and while it is difficult to avoid errors in a first edition of a work containing many formulas and figures, it is believed that few, if any, important errata remain in this volume.

R. S. Woodward.

Columbia College, New York, N. Y., June 15, 1894.

CONTENTS.

USEFUL FORMULAS.

f. Algebraic Formulas page $\underset{\text { PAGE }}{\text { xiii }}$
a. Arithmetic and geometric means xiii
b. Arithmetic progression xiii
c. Geometric progression xiii
d. Sums of special series xiii
e. The binomial series and applications xivf. Exponential and logarithmic series
g. Relations of natural logarithms to other logarithms xv$x i v$
2. Trigonometric Formulas xv
a. Signs of trigonometric functions xv
b. Values of functions for special angles xv
c. Fundamental formulas xv
d. Formulas involving two angles xvi
e. Formulas involving multiple angles xvi
f. Exponential values. Moivre's formula xvi
g. Values of functions in series xvii
h. Conversion of arcs into angles and angles into arcs xvii
3. Formulas for Solution of Plane Triangles xviii
4. Formulas for Solution of Spherical Triangles xx
a. Right angled spherical triangles xx
b. Oblique angled triangles xx
5. Elementary Differential Formulas xxi
a. Algebraic xxi
b. Trigonometric and inverse trigonometric xxi
6. Taylor's and Maclaurin's Series xxii
a. Taylor's series xxii
b. Maclaurin's series xxii
c. Example of Taylor's series xxii
d. Example of Maclaurin's series xxiii
7. Elementary Formulas for Integration xxiii
a. Indefinite integrals xxiii
b. Definite integration xxvi
MENSURATION.

1. Lines xxviii
a. In a circle xxviii
b. In regular polygon xxviii
c. In ellipse. xxix
2. Areas xxix
a. Area of plane triangle xxix
b. Area of trapezoid xxix
c. Area of regular polygon xxx
d. Area of circle, circular annulus, etc. xxx
e. Area of ellipse xxx
f. Surface of sphere, etc. xxxi
g. Surface of right cylinder xxxi
h. Surface of right cone xxxi
i. Surface of spheroid xxxi
3. Volumes xxxii
a. Volume of prism xxxii
b. Volume of pyramid xxxii
c. Volume of right circular cylinder xxxii
d. Volume of right cone with circular base xxxii
e. Volume of sphere and spherical segments xxxii
f. Volume of ellipsoid xxxiii
UNITS.
4. Standards of Length and Mass xxxiv
5. British Measures and Weights xxxvii
a. Linear measures xxxvii
b. Surface or square measures xxxviii
c. Measures of capacity xxxviii
d. Measures of weight xxxix
6. Metric Measures and Weights xl
7. The C. G. S. System of Units xlii
GEODESY.
8. Form of the Earth. The Earth's Spheroid. The Geoid xliii
9. Adopted Dimensions of Earth's Spherodd xliii
10. Auxiliary Quantities. xliii
11. Equations to Generating Ellipse of Spheroid xliv
12. Latitudes used in Geodesy xliv
13. Radil of Curvature xlv
14. Lengths of Arcs of Meridians and Parallels of Latitude xlvi
a. Arcs of meridian xlvi
b. Arcs of parallel xlix
15. Radius-Vector of Earth's Spheroid 1
16. Areas of Zones and Quadrilaterals of the Earth's Surface 1
17. Spheres of Equal Volume and Equal Surface with Earth's Spheroid lii
if. Co-ordinates for the Polyconic Projection of Maps liii
18. Lines on a Spheroid lvì
a. Characteristic property of curves of vertical section 1vi
b. Characteristic property of geodesic line lvii
19. Solution of Spheroidal Triangles lvii
a. Spherical or spheroidal excess lviii
20. Geodetic Differences of Latitude, Longitude, and Azimuth lviii
a. Primary triangulation lviii
b. Secondary triangulation lx
21. Trigonometric Leveling lxi
a. Computation of heights from observed zenith distances lxi
b. Coefficients of refraction lxiii
c. Dip and distance of sea horizon 1xiii
22. Miscellaneous Formulas lxiii
a. Correction to observed angle for eccentric position of instrument 1xiii
b. Reduction of measured base to sea level lxiv
c. The three-point problem lxiv
23. Salient Facts of Physical Geodesy lxv
a. Area of earth's surface, areas of continents, area of oceans lxv
b. Average heights of continents and depths of oceans lxv
c. Volume, surface density, mean density, and mass of earth lxv
d. Principal moments of inertia and energy of rotation of earth lxvi
ASTRONOMY.
24. The Celestial Sphere. Planes and Circles of Reference lxvii
25. Spherical Co-ordinates lxvii
a. Notation lxvii
b. Altitude and azimuth in terms of declination and hour angle lxviii
c. Declination and hour angle in terms of altitude and azimuth lxix
d. Hour angle and azimuth in terms of zenith distance lxix
e. Formulas for parallactic angle lxix
f. Hour angle, azimuth, and zenith distance of a star at elongation lxx
g. Hour angle, zenith distance, and parallactic angle for transit of a star across prime vertical lxx
h. Hour angle and azimuth of a star when in the horizon, or at the time of rising or setting lxxi
i. Differential formulas lxxii
26. Relations of Different Kinds of Time used in Astronomy lxxii
a. The sidereal and solar days lxxii
b. Relation of apparent and mean time lxxiii
c. Relation of sidereal and mean solar intervals of time lxxiii
d. Interconversion of sidereal and mean solar time lxxiii
e. Relation of sidereal time to the right ascension and hour angle of a star lxxiv
27. Determination of Time lxxiv
a. By meridian transits lxxiv
b. By a single observed altitude of a star lxxvi
c. By equal altitudes of a star lxxvii
28. Determination of Latitude lxxvii
a. By meridian altitudes lxxvii
b. By the measured altitude of a star at a known time lxxviii
c. By the zenith telescope lxxix
29. Determination of Azimuth lxxix
a. By observation of a star at a known time 1xxix
b. By an observed altitude of a star 1xxxi
c. By equal altitudes of a star lxxxi
THEORY OF ERRORS.
30. Laws of Error 1xxxiii
a. Probable, mean, and average errors lxxxiv
b. Probable, mean, average, and maximum actual errors of inter- polated logarithms, trigonometric functions, etc. lxxxv
31. The Method of Least Squares lxxxvi
a. General statement of method lxxxvi
b. Relation of probable, mean, and average errors lxxxviii
c. Case of a single unknown quantity lxxxix
d. Case of observed function of several unknown quantities xc
e. Case of functions of several observed quantities xciii
f. Computation of mean and probable errors of functions of ob- served quantities xcv
EXPLANATION OF SOURCE AND USE OF TABLES.
Tables 1 and 2 x xix
Table 3 xcix
Table 4 xcix
Tables 5 and 6 xcix
Tables 7 and 8 c
Table 9 c
Tables io and in c
Table 12 c
Tables 13 and 14 c
Tables 15 and 16 ci
Table 17 ci
Table 18 cii
Tables 19-24. cii
Tables 25-29. ciii
Table 3° ciii
Table ${ }^{1}$ civ
Tables 32 and 33 civ
Tables 34 and 35 civ
Tables 3^{6} and 37 civ
Table 38 civ
Table 39 civ
Table 40 civ
Table 41 cv
Table 42 cv

TABLES.

table
I. For converting U. S. Weights and Measures - Customary to Metric.
PAGE 2
2. For converting U. S. Weights and Measures - Metric to Cus- tomary 3
3. Values of reciprocals, squares, cubes, square roots, cube roots, and common logarithms of natural numbers 4-22
4. Circumference and area of circle in terms of diameter d 23
5. Logarithms of numbers, 4-place 24-25
6. Antilogarithms, 4-place 26-27
7. Natural sines and cosines 28-29
8. Natural tangents and cotangents 30-31
9. Traverse table (differences of latitude and departure) 32-47
10. Logarithms of meridian radius of curvature in English feet 48-56
11. Logarithms of radius of curvature of normal section in English feet 57-65
12. Logarithms of radius of curvature (in metres) of sections oblique to meridian 66-67
13. Logarithms of factors for computing spheroidal excess of triangles (unit $=$ English foot) 68
14. Logarithms of factors for computing spheroidal excess of triangles (unit $==$ the metre) 69
15. Logarithms of factors for computing differences of latitude, longi- tude, and azimuth in secondary triangulation (unit $=$ English foot) 70-73
16. Logarithms of factors for computing differences of latitude, longi- tude, and azimuth in secondary triangulation (unit $=$ the metre) 74-77
17. Lengths of terrestrial arcs of meridian (in English feet) 78-80
18. Lengths of terrestrial arcs of parallel (in English feet) 8r-83
19. Co-ordinates for projection of maps, scale $=1 / 250000$ $84-9 \mathrm{r}$
20. Co-ordinates for projection of maps, scale $=1 / 125000$ 92-ior
21. Co-ordinates for projection of maps, scale $=1 / \mathbf{2} 2720$ 102-109
22. Co-ordinates for projection of maps, scale $= \pm / 63360$ rio-12r
23. Co-ordinates for projection of maps, scale $=1 / 200000$ 122-r3r
24. Co-ordinates for projection of maps, scale $=1 / 80000$ 132-14I
25. Areas of quadrilaterals of the earth's surface of 10° extent in lati- tude and longitude 142
26. Areas of quadrilaterals of the earth's surface of I° extent in lati- tude and longitude 144-145
27. Areas of quadrilaterals of the earth's surface of 30^{\prime} extent in lati- tude and longitude $146-148$
28. Areas of quadrilaterals of the earth's surface of 15^{\prime} extent in lati- tude and longitude I50-154
29. Areas of quadrilaterals of the earth's surface of 10 ' extent in lati- tude and longitude 156-x59
30. Determination of heights by the barometer (formula of Babinet) 160
3I. Mean astronomical refraction. I6I
32. Conversion of arc into time 162
33. Conversion of time into arc 163
34. Conversion of mean time into sidereal time 164
35. Conversion of sidereal time into mean time 165
36. Length of I° of the meridian at different latitudes (in metres, statute miles, and geographic miles). ı66
37. Length of I° of the parallel at different latitudes (in metres, stat- ute miles, and geographic miles) 167
38. Interconversion of nautical and statute miles r 68
39. Continental measures of length, with their metric and English equivalents 168
40. Acceleration (g) of gravity on surface of earth and derived func- tions 169
41. Linear expansions of principal metals 170
42. Fractional change in a number corresponding to a change in its logarithm 170
APPENDIX.
Numerical Constants 171
Goedetical Constants 171
Astronomical Constants 172
Physical Constants 172
Synoptic conversion of English and Metric Units -
English to Metric 173
Metric to English 174
Dimensions of physical quantities 175
INDEX 177

USEFUL FORMULAS.

I. Algebraic.

a. Arithmetic and geometric means. The arithmetic mean of n quantities a, b, c, \ldots is

$$
\frac{1}{n}(a+b+c+\ldots) ;
$$

their geometric mean is

$$
\left(\begin{array}{lll}
a & b & c
\end{array}\right)^{\frac{1}{n}} .
$$

A case of special interest is

$$
\sqrt{a b}=\frac{1}{2}(a+b)\left\{1-\left(\frac{a-b}{a+b}\right)^{2}\right\}^{\frac{1}{2}} .
$$

b. Arithmetic progression. If a is the first term, and $a+d, a+2 d$, $a+3 d, \ldots$ are the successive terms, the nth or last term z is

$$
z=a+(n-1) d
$$

The sum s of the n terms of this series is

$$
\begin{aligned}
s=\frac{1}{2}(a+z) n & =\left\{a+\frac{1}{2}(n-\mathrm{I}) d\right\} n \\
& =\left\{z-\frac{1}{2}(n-\mathrm{I}) d\right\} n \\
& =\frac{1}{2}(a+z)\left(\frac{z-a}{d}+\mathrm{I}\right) .
\end{aligned}
$$

c. Geometric progression. If a is the first term, and $a r, a r^{2}, \ldots$ are the successive terms, the nth or last term z is

$$
z=a r^{n-1}
$$

The sum of the n terms is

If

$$
s=\frac{a\left(r^{n}-\mathrm{I}\right)}{r-\mathrm{I}}=\frac{r z-a}{r-\mathrm{I}}=\frac{z\left(r^{n}-\mathrm{I}\right)}{(r-\mathrm{I}) r^{n-1}}
$$

$$
r<1 \text { and } n=\infty,
$$

$$
s=\frac{a}{\mathrm{I}-r}
$$

d. Sums of special series.

$$
\begin{aligned}
& \mathbf{x}+2+3+4+\cdots+n \quad=\frac{1}{2} n(n+1) \\
& 2+4+6+8+\ldots+2 n=n(n+1) \\
& 1+3+5+7+\ldots+(2 n-1)=n^{2} \\
& 1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2} \quad=\frac{1}{6} n(n+1)(2 n+1) \\
& 1^{8}+2^{8}+3^{9}+4^{8}+\ldots+n^{8}=\frac{1}{4} n^{2}(n+1)^{2} \text {. }
\end{aligned}
$$

e. The binomial series and applications.

For $a>b$,

$$
\begin{aligned}
(a \pm b)^{n}=a^{n} \pm n a^{n-1} b & +\frac{n(n-1)}{1 \cdot 2} a^{n-2} b^{2} \\
& \pm \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-8} b^{g}+\ldots
\end{aligned}
$$

For $x<\mathrm{r}$,

$$
\begin{aligned}
& (\mathrm{I} \pm x)^{n}=\mathrm{I} \pm n x+\frac{n(n-\mathrm{I})}{\mathrm{I} \cdot 2} x^{2} \pm \frac{n(n-\mathrm{r})(n-2)}{\mathrm{I} \cdot 2 \cdot 3} x^{8}+\ldots \\
& \frac{\mathrm{I}}{\mathrm{I}+x}=\mathrm{I}-x+x^{2}-x^{8}+x^{4}-\ldots \\
& \frac{\mathrm{I}}{\mathrm{I}-x}=\mathrm{I}+x+x^{2}+x^{8}+x^{4}+\ldots \\
& \frac{\mathrm{I}}{(\mathrm{I}-x)^{2}}=\mathrm{I}+2 x+3 x^{2}+4 x^{8}+5 x^{4}+\ldots \\
& (\mathrm{I}+x)^{\frac{1}{2}}=\mathrm{I}+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{8}-\frac{5}{28} x^{4}+\ldots \\
& (\mathrm{I}-x)^{\frac{1}{2}}=\mathrm{I}-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{8}-\mathrm{I}^{\frac{5}{2} 8} x^{4}-\ldots \\
& \frac{\mathrm{I}}{(\mathrm{I}+x)^{\frac{3}{3}}}=\mathrm{I}-\frac{1}{2} x+\frac{3}{8} x^{2}-\frac{8}{16} x^{8}+\frac{35}{128} x^{4}-\ldots \\
& \frac{\mathrm{I}}{(\mathrm{I}-x)^{\frac{3}{3}}}=\mathrm{I}+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{5}{\mathrm{I}_{6}} x^{8}+\frac{35}{128} x^{4}+\ldots .
\end{aligned}
$$

f. Exponential and logarithmic series.

For $-\infty<x<\infty$,

$$
e^{x}=1+\frac{x}{1}+\frac{x^{2}}{1.2}+\frac{x^{8}}{1.2 .3}+\frac{x^{4}}{1.2 \cdot 3 \cdot 4}+\ldots
$$

The number e is the base of the natural or "Napierian" system of logarithms. For $x=+1$, the above series gives

$$
e=2.718281828459 \ldots
$$

In the natural system the following series hold with the limitations indicated:

$$
\begin{aligned}
& a^{x}=\mathrm{I}+\frac{\log a}{\mathrm{I}} x+\frac{(\log a)^{2}}{\mathrm{I} \cdot 2} x^{2}+\frac{(\log a)^{\mathrm{8}}}{\mathrm{I} \cdot 2 \cdot 3} x^{\mathrm{s}} \ldots \\
& -\infty<x<\infty \text {; } \\
& \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{8}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots \\
& x \leqq \text { I; } \\
& \log (\mathrm{r}-x)=-x-\frac{x^{2}}{2}-\frac{x^{8}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}-\ldots \\
& x<1 ; \\
& \log x=2\left\{\frac{x-\mathrm{I}}{x+\mathrm{r}}+\frac{1}{3}\left(\frac{x-\mathrm{r}}{x+1}\right)^{3}+\frac{1}{5}\left(\frac{x-\mathrm{r}}{x+\mathrm{I}}\right)^{5}+\frac{1}{7}\left(\frac{x-\mathrm{r}}{x+\mathrm{r}}\right)^{7}+\ldots\right\} \\
& 0<x<\infty \text {; } \\
& \log \frac{x+y}{x}=2\left\{\frac{y}{2 x+y}+\frac{1}{3}\left(\frac{y}{2 x+y}\right)^{8}+\frac{1}{8}\left(\frac{y}{2 x+y}\right)^{5}+\ldots\right\} \\
& y^{2}<(2 x+y)^{2} .
\end{aligned}
$$

g. Relations of natural logarithms to other logarithms.
$B=$ base of any system,
$N=$ any number,
$L=\log N$ to base $B=\log _{B} N$,
$l=\log N$ to base $e=\log _{e} N$.
Then

$$
\begin{aligned}
& N=e^{i}=B^{L} \\
& L=l \log _{B} e=t / \log _{e} B
\end{aligned}
$$

$\log _{B} e=\mathrm{r} / \log _{e} B=\mu$, say, which is called the modulus of the system whose base is B. In the common, or Briggean system,

$$
\begin{aligned}
\mu=\log _{10} e & =0.43429448 \ldots \\
\quad \log \mu & =9.6377843-10
\end{aligned}
$$

2. Trigonometric Formulas.

a. Signs of trigonometric functions.

Function.		rst Quadrant.	2d Quadrant.	3d Quadrant.	4th Quadrant.
sine	+	+	-	-	
cosine	+	+	-	-	+
tangent	+	-	+	+	-
cotangent. . . .	+	-	+	-	

b. Values of functions for special angles.

	0°	90°	180°	270°	360°	30°	45°	60°
sine	-	+ I	-	- I	\bigcirc	$\frac{1}{2}$	$\frac{1}{2} \sqrt{2}$	$\frac{1}{2} \sqrt{3}$
cosine	+1	\bigcirc	- I	\bigcirc	+1	$\frac{1}{2} \sqrt{3}$	$\frac{1}{2} \sqrt{2}$	$\frac{1}{2}$
tangent	\bigcirc	∞	\bigcirc	∞	\bigcirc	$\frac{1}{3} \sqrt{3}$	I	$\sqrt{3}$
cotangent . .	∞	\bigcirc	∞	\bigcirc	∞	$\sqrt{3}$	1	$\frac{1}{3} \sqrt{3}$

c. Fundamental formulas.

$$
\begin{aligned}
& \sin ^{2} \alpha+\cos ^{2} \alpha=1, \\
& \cos \alpha \sec \alpha=\mathrm{I}, \\
& \tan a=\frac{\sin a}{\cos \alpha}, \\
& \tan u \cot a=1, \\
& \sin u \operatorname{cosec} a=I \text {, } \\
& \cot \alpha=\frac{\cos \alpha}{\sin \alpha}, \\
& x+\tan ^{2} a=\frac{1}{\cos ^{2} \alpha}=\sec ^{2} \alpha, \quad 1+\cot ^{2} \alpha=\frac{1}{\sin ^{2} \alpha}=\operatorname{cosec}^{2} a, \\
& \text { versed } \sin a=1-\cos \alpha .
\end{aligned}
$$

d. Formulas involving two angles.
$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$, $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin u \sin \beta$.
$\tan (\alpha \pm \beta)=(\tan \alpha \pm \tan \beta) /(\mathrm{I} \mp \tan \alpha \tan \beta)$, $\cot (\alpha \pm \beta)=(\cot a \cot \beta \mp \mathrm{I}) /(\cot a \pm \cot \beta)$.
$\sin \alpha+\sin \beta=2 \sin \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$, $\sin \alpha-\sin \beta=2 \cos \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\alpha-\beta)$.
$\cos \alpha+\cos \beta=2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$, $\cos \alpha-\cos \beta=-2 \cdot \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\alpha-\beta)$.
$\tan \alpha \pm \tan \beta=\frac{\sin (\alpha \pm \beta)}{\cos \alpha \cos \beta}$,
$\cot \alpha \pm \cot \beta=\frac{\sin (\beta \pm a)}{\sin a \sin \beta}$.
$2 \sin a \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)$, $2 \cos \alpha \cos \beta=\cos (\alpha-\beta)+\cos (\alpha+\beta)$,
$2 \sin \alpha \cos \beta=\sin (\alpha-\beta)+\sin (\alpha+\beta)$.
$\frac{\sin \alpha+\sin \beta}{\sin \alpha-\sin \beta}=\tan \frac{1}{2}(\alpha+\beta) \cot \frac{1}{2}(\alpha-\beta)$,
$\frac{\cos \alpha+\cos \beta}{\cos \alpha-\cos \beta}=-\cot \frac{1}{2}(\alpha+\beta) \cot \frac{1}{2}(\alpha-\beta)$.

e. Formulas involving multiple angles.

$\sin 2 a=2 \sin \alpha \cos \alpha$,
$\sin 3 \alpha=3 \sin \alpha \cos ^{2} \alpha-\sin ^{8} \alpha$.
$\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=1-2 \sin ^{2} \alpha=2 \cos ^{2} \alpha-1$, $\cos 3 a=\cos ^{8} \alpha-3 \sin ^{2} \alpha \cos \alpha$.
$\tan \frac{1}{2} \alpha=\frac{\sin \alpha}{1+\cos \alpha}=\frac{1-\cos \alpha}{\sin a}=\left(\frac{1-\cos \alpha}{1+\cos \alpha}\right)^{\frac{1}{3}}$,
$\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}, \quad \cot 2 \alpha=\frac{\cot ^{2} \alpha-1}{2 \cot \alpha}$,
$\sin \alpha=\frac{2 \tan \frac{1}{2} \alpha}{1+\tan ^{2} \frac{1}{2} a}, \quad \cos \alpha=\frac{1-\tan ^{2} \frac{1}{2} \alpha}{1+\tan ^{2} \frac{1}{2} \alpha}$
$2 \sin ^{2} \alpha=1-\cos 2 a, \quad 2 \cos ^{2} a=1+\cos 2 a$, $4 \sin ^{8} \alpha=3 \sin \alpha-\sin 3 a, \quad 4 \cos ^{8} \alpha=3 \cos \alpha+\cos 3 a_{0}$.

f. Exponential values. Moivre's formula.

$e=$ base of natural logarithms,
$i=\sqrt{-\mathrm{I}}, i^{2}=-\mathrm{1}, i^{8}=-i, i^{4}=\mathrm{r}$, etc.
$\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right), \quad \sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$,
$\cos i x=\frac{1}{2}\left(e^{-x}+e^{x}\right), \quad \sin i x=\frac{1}{2 i}\left(e^{-x}-e^{x}\right)$.
$(\cos x \pm i \sin x)^{m}=\cos m x \pm i \sin m x$.

g. Values of functions in series.

For x in arc the following series hold within the limits indicated.

$$
\begin{gathered}
\sin x=x-\frac{x^{8}}{6}+\frac{x^{6}}{120}-\frac{x^{7}}{5^{\circ} 4^{\circ}}+\ldots, \\
\cos x=\mathrm{r}-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{7^{20}}+\ldots \\
-\infty<x<+\infty .
\end{gathered}
$$

$$
\tan x=x+\frac{1}{3} x^{8}+\frac{2}{15} x^{6}+\frac{13}{315} x^{7}+\ldots,
$$

$$
\sec x=1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\frac{6}{6} x^{6}+\ldots,
$$

$$
-\frac{1}{2} \pi<x<+\frac{1}{2} \pi .
$$

$$
\operatorname{arc} \sin x=x+\frac{1}{6} x^{8}+\frac{3}{40} x^{6}+\frac{8}{r_{12}^{2}} x^{7}+\ldots,
$$

$$
\arctan x=x-\frac{x^{8}}{3}+\frac{x^{6}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\ldots,
$$

$$
-\mathrm{x}<x<+\mathrm{r}
$$

$$
x=\sin x+\frac{1}{6} \sin ^{3} x+\frac{3}{40} \sin ^{5} x+\frac{1}{15} \sin ^{7} x+\ldots,
$$

$$
-\frac{1}{2} \pi<x<+\frac{1}{2} \pi .
$$

$$
x=\tan x-\frac{1}{3} \tan ^{8} x+\frac{1}{3} \tan ^{5} x-\frac{1}{4} \tan ^{7} x+\ldots,
$$

$$
-\frac{1}{4} \pi<x<+\frac{1}{4} \pi .
$$

$\log \sin x=\log x-\mu\left(\frac{1}{6} x^{2}+{ }^{\frac{1}{80}} x^{4}+\frac{1}{2835} x^{6}+\ldots\right)$,

$$
x \text { positive and }<\pi,
$$

$$
\mu=\text { modulus of common logarithms. See p. xv. }
$$

$$
\log \tan x=\log x+\mu\left(\frac{1}{3} x^{2}+\frac{7}{30} x^{4}+\frac{69}{28} \frac{2}{85} x^{6}+\ldots\right),
$$

$$
x \text { positive and }<\frac{1}{2} \pi
$$

h. Conversion of arcs into angles and angles into arcs.

Denote by x°, x^{\prime}, and $x^{\prime \prime}$ respectively the angle (in degrees, minutes, or seconds) corresponding to the $\operatorname{arc} x$. Then by equality of ratios

$$
\frac{360^{\circ}}{x^{\circ}}=\frac{360 \times 60^{\prime}}{x^{\prime}}=\frac{360 \times 60 \times 60^{\prime \prime}}{x^{\prime \prime}}=\frac{2 \pi}{x},
$$

whence

$$
\begin{aligned}
& x^{\circ}=x \frac{180^{\circ}}{\pi} \\
& x^{\prime}=x \frac{180 \times 60^{\prime}}{\pi} \\
& x^{\prime \prime}=x \frac{180 \times 60 \times 60^{\prime \prime}}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \cot x=\frac{1}{x}\left(\mathrm{x}-\frac{1}{3} x^{2}-\frac{1}{45} x^{4}-{ }_{9}^{2} \frac{2}{5} x^{6}-\ldots\right), \\
& \operatorname{cosec} x=\frac{1}{x}\left(\mathrm{r}+\frac{1}{6} x^{2}+{ }_{3}^{57}{ }^{7} x^{4}+\operatorname{TBI}^{3120} x^{6}+\ldots\right), \\
& -\pi<x<+\pi .
\end{aligned}
$$

Put

$$
\frac{\mathbf{1} 80^{\circ}}{\pi}=\rho^{\circ}=\text { number of degrees in the radius, }
$$

$$
\frac{180 \times 60^{\prime}}{\pi}=\rho^{\prime}=\text { number of minutes in the radius, }
$$

$$
\frac{180 \times 60 \times 60^{\prime \prime}}{\pi}=\rho^{\prime \prime}=\text { number of seconds in the radius. }
$$

Then

$$
\begin{gathered}
x^{\circ}=x \rho^{\circ}, \quad x^{\prime}=x \rho^{\prime}, \quad x^{\prime \prime}=x \rho^{\prime \prime} . \\
\rho^{\circ}=57 .^{\circ} 2957795, \quad \log \rho^{\circ}=1.75^{812263}, \\
\rho^{\prime}=3437 .^{\prime} 74677, \quad \log \rho^{\prime}=3.53627388, \\
\rho^{\prime \prime}=206264 .^{\prime \prime} 806, \quad \quad \log \rho^{\prime \prime}=5.3144^{\prime 2} 5 \mathrm{I} 3 .
\end{gathered}
$$

3. Formulas for Solution of Plane Triangles.

$$
\begin{aligned}
a, b, c & =\text { sides of triangle } \\
a, \beta, \gamma & =\text { angles opposite to } a, b, c, \text { respectively } \\
A & =\text { area of triangle, } \\
r & =\text { radius of inscribed circle } \\
R & =\text { radius of circumscribed circle, } \\
s & =\frac{1}{2}(a+b+c) \\
& \quad \frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}=2 R .
\end{aligned}
$$

$a=b \cos \gamma+c \cos \beta, \quad b=c \cos \alpha+a \cos \gamma, \quad c=a \cos \beta+b \cos \alpha_{0}$

$$
r=4 R \sin \frac{1}{2} \alpha \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma=\frac{a b c}{4 R s}
$$

$$
\begin{aligned}
& (a+b) \cos \frac{1}{2}(a+\beta)=c \cos \frac{1}{2}(\alpha-\beta) \\
& (a-b) \sin \frac{1}{2}(\alpha+\beta)=c \sin \frac{1}{2}(\alpha-\beta)
\end{aligned}
$$

$$
\frac{a+b}{a-b}=\frac{\tan \frac{1}{2}(\alpha+\beta)}{\tan \frac{1}{2}(\alpha-\beta)}=\frac{\tan \frac{1}{2} \gamma}{\tan \frac{1}{2}(\alpha-\beta)}
$$

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \alpha=(b+c)^{2}-4 b c \cos ^{2} \frac{1}{2} a
$$

$$
\sin \frac{1}{2} a=\sqrt{\frac{(s-b)(s-c)}{b c}}, \quad \cos \frac{1}{2} a=\sqrt{\frac{s(s-a)}{b c}}
$$

$$
\tan \frac{1}{2} a=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}=\frac{r}{s-a}
$$

$$
r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}
$$

$$
\begin{aligned}
A & =\frac{1}{2} a b \sin \gamma=\frac{a^{2} \sin \beta \sin \gamma}{2 \sin a}=2 R^{2} \sin a \sin \beta \sin \gamma \\
& =r^{2} \cot \frac{1}{2} a \cot \frac{1}{2} \beta \cot \frac{1}{2} \gamma=\sqrt{s(s-a)(s-b)(s-c)} \\
& =r s=\frac{1}{4} a b c / R .
\end{aligned}
$$

In right angled triangles let

$$
\begin{aligned}
& a=\text { altitude } \\
& b=\text { base } \\
& c=\text { hypothenuse } \\
& \gamma=90^{\circ}
\end{aligned}
$$

Then

$$
\begin{gathered}
a=c \sin \alpha=c \cos \beta=b \tan \alpha=b \cot \beta \\
b=c \sin \beta=c \cos \alpha=a \tan \beta=a \cot \alpha \\
A=\frac{1}{2} a b=\frac{1}{2} a^{2} \cot \alpha=\frac{1}{2} b^{2} \tan \alpha=\frac{1}{4} c^{2} \sin 2 a
\end{gathered}
$$

Table for solution of oblique triangles.

\begin{tabular}{|c|c|c|}
\hline Given. \& Sought. \& Formula.

\hline a, b, c \& a

A \& $$
\begin{aligned}
\sin \frac{1}{2} a & =\sqrt{\frac{(s-b)(s-c)}{b c}}, \quad s=\frac{1}{2}(a+b+c) \\
\cos \frac{1}{2} a & =\sqrt{\frac{s(s-a)}{b c}} \\
\tan \frac{1}{2} a & =\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
A & =\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

\hline a, b, a \& \[
$$
\begin{gathered}
\beta \\
\gamma \\
c \\
A
\end{gathered}
$$

\] \& | $\sin \beta=b \sin a / a$. |
| :--- |
| When $a>b, \beta<90^{\circ}$ and but one value results. When $b>a$, β has two values. $\begin{aligned} & \gamma=180^{\circ}-(\alpha+\beta) . \\ & c=a \sin \gamma / \sin a . \\ & A=\frac{1}{2} a b \sin \gamma . \end{aligned}$ |

\hline a, a, β \& \[
$$
\begin{gathered}
b \\
\gamma \\
c \\
A
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& b=a \sin \beta / \sin a . \\
& \gamma=\mathrm{r} 80^{\circ}-(\alpha+\beta) . \\
& c=a \sin \gamma / \sin a=a \sin (\alpha+\beta) / \sin a . \\
& A=\frac{1}{2} a b \sin \gamma=\frac{1}{2} a^{2} \sin \beta \sin \gamma / \sin a .
\end{aligned}
$$
\]

\hline a, b, γ \& a

$$
a, \beta
$$ \& \[

$$
\begin{aligned}
& \tan a=\frac{a \sin \gamma}{b-a \cos \gamma} \\
& \frac{1}{2}(a+\beta)=90^{\circ}-\frac{1}{2} \gamma, \\
& \tan \frac{1}{2}(a-\beta)=\frac{a-b}{a+b} \cot \frac{1}{2} \gamma . \\
& c=\left(a^{2}+b^{2}-2 a b \cos \gamma\right)^{\frac{1}{2}}, \\
& =\left\{(a+b)^{2}-4 a b \cos ^{2} \frac{1}{2} \gamma\right\}^{\frac{1}{2}}, \\
& =\left\{(a-b)^{2}+4 a b \sin ^{2} \frac{1}{2} \gamma\right\}^{\frac{1}{2}}, \\
& =(a-b) / \cos \phi, \text { where } \tan \phi=2 \sqrt{a b} \sin \frac{1}{2} \gamma /(a-b), \\
& =a \sin \gamma / \sin a . \\
& A=\frac{1}{2} a b \sin \gamma .
\end{aligned}
$$
\]

\hline
\end{tabular}

4. Formulas for Solution of Spherical Triangles.

a. Right angled spherical triangles.
$a, b, c=$ sides of triangle, c being the hypotenuse, $a, \beta, \gamma=$ angles opposite to a, b, c, respectively,
$\gamma=90^{\circ}$.
$\sin a=\sin c \sin \alpha, \quad \sin b=\sin c \sin \beta$, $\tan a=\tan c \cos \beta, \quad \tan b=\tan c \cos \alpha$,
$=\sin b \tan u, \quad=\sin a \tan \beta ;$
$\cos a=\cos a \sin \beta, \quad \cos \beta=\cos b \sin a ;$
$\cos c=\cos a \cos b=\cot a \cot \beta$.
b. Oblique angled triangles.
$a, b, c=$ sides of triangle,
$a, \beta, \gamma=$ angles opposite to a, b, c, respectively,
$s=\frac{1}{2}(a+b+c)$,
$\sigma=\frac{1}{2}(a+\beta+\gamma)$,
$\epsilon=a+\beta+\gamma-180^{\circ}=$ spherical excess,
$S=$ surface of triangle on sphere of radius r.

$$
\frac{\sin a}{\sin a}=\frac{\sin b}{\sin \beta}=\frac{\sin c}{\sin \gamma}
$$

$\cos a=\cos b \cos c+\sin b \sin c \cos u$,
$\sin ^{2} \frac{1}{2} a=\frac{-\cos \sigma \cos (\sigma-a)}{\sin \beta \sin \gamma}, \quad \cos ^{2} \frac{1}{2} a=\frac{\cos (\sigma-\beta) \cos (\sigma-\gamma)}{\sin \beta \sin \gamma}$,

$$
\tan ^{2} \frac{1}{2} a=\frac{-\cos \sigma \cos (\sigma-a)}{\cos (\sigma-\beta) \cos (\sigma-\gamma)} .
$$

$\sin ^{2} \frac{1}{2} \alpha=\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c}, \quad \cos ^{2} \frac{1}{2} \alpha=\frac{\sin s \sin (s-a)}{\sin b \sin c}$,
$\tan ^{2} \frac{1}{2} a=\frac{\sin (s-b) \sin (s-c)}{\sin s \sin (s-a)}$.
$\cot \frac{1}{2} \epsilon=\frac{\cot \frac{1}{2} a \cot \frac{1}{2} b+\cos \gamma}{\sin \gamma}$,
$\tan ^{2} \frac{1}{4} \epsilon=\tan \frac{1}{2} s \tan \frac{1}{2}(s-a) \tan \frac{1}{2}(s-b) \tan \frac{1}{2}(s-c)$.

$$
S=\frac{\epsilon}{180^{\circ}} \pi r^{2} .
$$

Napier's analogies.

$\tan \frac{1}{2}(\alpha+b)=\frac{\cos \frac{1}{2}(\alpha-\beta)}{\cos \frac{1}{2}(\alpha+\beta)} \tan \frac{1}{2} c, \quad \tan \frac{1}{2}(\alpha-b)=\frac{\sin \frac{1}{2}(\alpha-\beta)}{\sin \frac{1}{2}(\alpha+\beta)} \tan \frac{1}{2} c$, $\tan \frac{1}{2}(\alpha+\beta)=\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \cot \frac{1}{2} \gamma, \quad \tan \frac{1}{2}(\alpha-\beta)=\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \cot \frac{1}{2} \gamma$.

Gauss's formulas.
$\cos \frac{1}{2}(a+\beta) \cos \frac{1}{2} c=\cos \frac{1}{2}(a+b) \sin \frac{1}{2} \gamma$, $\sin \frac{1}{2}(a+\beta) \cos \frac{1}{2} c=\cos \frac{1}{2}(a-b) \cos \frac{1}{2} \gamma$,
$\cos \frac{1}{2}(a-\beta) \sin \frac{1}{2} c=\sin \frac{1}{2}(a+b) \sin \frac{1}{2} \gamma$, $\sin \frac{1}{2}(a-\beta) \sin \frac{1}{2} c=\sin \frac{1}{2}(a-b) \cos \frac{1}{2} \gamma$.

5. Elementary Differential Formulas.

a. Algebraic.

$u, v, v, \ldots=$ variables subject to differentiation, $a, b, c, \ldots=$ constants.

$$
\begin{gathered}
d(a+u)=d u, \quad d(a u)=a d u, \\
d(u+v+w+\ldots)=d u+d v+d w+\ldots, \\
d(u v)=u d v+v d u, \\
d(u v w \ldots)=\left(\frac{d u}{u}+\frac{d v}{v}+\frac{d w}{w}+\ldots\right) u v w \ldots, \\
d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}=\frac{d u}{v}-\frac{u d v}{v^{2}}, \\
d\left(\frac{a+b u}{h+g u}\right)=\frac{b h-a g}{\left(h+g^{u}\right)^{2}} d u . \\
d v^{n}=n v^{n-1} d v, \quad d \sqrt{v}=\frac{d v}{2 \sqrt{v}} \\
d a^{v}=a^{v} \log a d v, \quad d e^{v}=e^{v} d v \\
(e=\text { base of natural logarithms }), \\
d \log v=d v / v . \\
d F(u, v, w \ldots)=\frac{\partial F}{\partial u} d u+\frac{\partial F}{\partial v} d v+\frac{\partial F}{\partial w} d w+\ldots .
\end{gathered}
$$

b. Trigonometric and inverse trigonometric.
$d \sin x=\cos x d x, \quad d \cos x=-\sin x d x$, $d \tan x=\sec ^{2} x d x, \quad d \cot x=-\operatorname{cosec}^{2} x d x$, $d \sec x=\sec ^{2} x \sin x d x, \quad d \operatorname{cosec} x=-\operatorname{cosec}^{2} x \cos x d x$.
$d \log \sin x=\cot x d x, \quad d \log \cos x=-\tan x d x$. $d \operatorname{arc} \sin x= \pm \frac{d x}{\sqrt{1-x^{2}}}, \quad d \arccos x=\mp \frac{d x}{\sqrt{1-x^{2}}}$,
$d \arctan x=\frac{d x}{1+x^{2}}, \quad d \operatorname{arccot} x=-\frac{d x}{1+x^{2}}$.

6. Taylor's and Maclaurin's Series.

a. Taylor's series.

If $u=f(x+h)$, any finite and continuous function of $x+h, h$ being an arbitrary increment to x; and if $d u / d x, d^{2} u / d x^{2}$, . . are finite and determinate,

$$
u=f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2}+f^{\prime \prime \prime}(x) \frac{h^{8}}{1.2 .3}+\cdots,
$$

where $f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots$ are the values of $f(x+h), d u / d x, d^{2} u / d x^{2}, \ldots$ when $h=0$. This is Taylor's series or theorem. The remainder after the first n terms in h is expressed by the definite integral

$$
\frac{1}{\text { 1. } 2 \cdot 3 \cdots n} \int_{0}^{h} f^{n+1}(x+h-z) z^{n} d z
$$

b. Maclaurin's series.

If in Taylor's series we make $x=0$, and $h=x$, the result is

$$
u=f(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{1.2}+f^{\prime \prime \prime}(0) \frac{x^{8}}{1.2 .3}+\ldots
$$

where $f(0), f^{\prime}(0), f^{\prime \prime}(0), \ldots$ are the values of $f(x), d u / d x, d^{2} u / d x^{2}, \ldots$ when $x=0$. This is Maclaurin's series or theorem. The remainder after the first n terms in x is expressed by the definite integral

$$
\begin{gathered}
\frac{\mathbf{1}}{\mathbf{1} \cdot 2 \cdot 3 \cdots n} \int_{0}^{x} f^{n+1}(x-z) z^{n} d z \\
\text { c. Example of Taylor's series. } \\
u=f(x+h)=\log (x+h) \\
f(x)=\log x \\
\frac{d u}{d x}=\frac{\mathbf{1}}{x+h}, \quad f^{\prime}(x)=+x^{-1} \\
\frac{d^{2} u}{d x^{2}}=-\frac{1}{(x+h)^{2}}, \quad f^{\prime \prime}(x)=-x^{-2} \\
\frac{d^{8} u}{d x^{8}}=+\frac{2}{(x+h)^{3}}, \quad f^{\prime \prime \prime}(x)=+2 x^{-8}
\end{gathered}
$$

Hence for common logarithms, μ being the modulus,

$$
\log (x+h)=\log x+\mu\left(x^{-1} h-\frac{1}{2} x^{-2} h^{2}+\frac{1}{3} x^{-3} h^{8}-\ldots\right)
$$

and the sum of the remaining terms is

$$
-\frac{\mu}{1 \cdot 2 \cdot 3} \int_{0}^{h} \frac{2 \cdot 3}{(x+h-z)^{4}} z^{8} d z
$$

Since x is the least value of $(x+h-z)$ within the limits of this integral, the sum of the remaining terms is negative, and numerically

$$
<\frac{1}{4} \mu\left(\frac{h}{x}\right)^{4} .
$$

If, for example, $(h / x)=1 / 100$, the remainder in question is less than $4 \times 0.434 \times 10^{-8}$, or about one unit in the ninth place of decimals.
d. Example of Maclaurin's series.

$$
\begin{array}{cl}
u=f(x)=\sin x . \\
& f(0)=0 \\
\frac{d u}{d x}=\cos x, & f^{\prime}(0)=+\mathrm{I}, \\
\frac{d^{2} u}{d x^{2}}=-\sin x, & f^{\prime \prime}(0)=0 \\
\frac{d^{8} u}{d x^{3}}=-\cos x, & f^{\prime \prime \prime}(0)=-\mathrm{I}
\end{array}
$$

Hence

$$
f(x)=\sin x=x-\frac{x^{8}}{1 \cdot 2 \cdot 3}+\frac{x^{6}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}-\ldots
$$

and the sum of the remaining terms is

$$
-\frac{1}{5!} \int_{0}^{x} \sin (x-z) z^{3} d z
$$

If g is the greatest value of $\sin (x-z)$ within the limits of this integral the remainder in question is negative and numerically

$$
<\frac{g}{6} \times \frac{\mathrm{x}}{5!} x^{6}
$$

If, for example, $x=\pi / 6$ (the arc of 30°), $g=\frac{1}{2}$, and the remainder is numerically less than $0.0000{ }^{4} 43$.
7. Elementary Formulas for Integration.

$$
\begin{gathered}
\text { a. Indefinite integrals. } \\
\int a d x=a \int d x=a x+C . \\
\int f(x) d x+\int \phi(x) d x=\int\{f(x)+\phi(x)\} d x
\end{gathered}
$$

If $x=\phi(y)$, and $d x=\phi^{\prime}(y) d y$,

$$
\begin{aligned}
& \int f(x) d x=\int f\{\phi(y)\} \phi^{\prime}(y) d y \\
& \frac{d}{d y} \int f(x ; y) d x=\int \frac{d f(x, y)}{d y} d x .
\end{aligned}
$$

Since $d(u v)=u d v+v d u$,

$$
\int u d v=u v-\int v d u ; \text { and }
$$

if $u=f(x)$ and $v=\phi(x)$,

$$
\begin{aligned}
& \int f(x) \frac{d \phi(x)}{d x} d x=f(x) \phi(x)-\int \phi(x) \frac{d f(x)}{d x} d x \text {. }^{*} \\
& \int d x \int f(x, y) d y=\int d y \int f(x, y) d x . \\
& \int d x \int f(x) d x=x \int f(x) d x-\int x f(x) d x . \\
& \int x^{n} d x=\frac{1}{n+1} x^{n-1}+C . \\
& \int \frac{d x}{x^{n}}=-\frac{1}{n-1} x^{-(n-1)}+C, \quad n>1 . \\
& \int(a+b x)^{n} d x=\frac{(a+b x)^{n+1}}{(n+1) b}+C . \\
& \int \frac{d x}{x}=\log x \dagger+C, \quad \int \frac{d x}{a+b x}=b^{-1} \log (a+b x) \text {. } \\
& \int \frac{d x}{x^{2}}=-\frac{\mathbf{1}}{x}+C, \quad \int \frac{d x}{(a+b x)^{2}}=-\frac{\mathbf{1}}{b(a+b x)}+C . \\
& \int \frac{d x}{1+x^{2}}=\arctan x+C, \quad \int \frac{-d x}{1+x^{2}}=\operatorname{arccot} x+C . \\
& \int \frac{d x}{1-x^{2}}=\frac{1}{2} \log \frac{\mathrm{I}+x}{\mathrm{I}-x}+C, \quad \int \frac{d x}{x^{2}-\mathrm{I}}=\frac{1}{2} \log \frac{x-\mathrm{I}}{x+\mathrm{I}}+C . \\
& \int \frac{d x}{a+b x^{2}}=(a b)^{-\frac{1}{2}} \arctan (b / a)^{\frac{1}{2}} x+C \text {, for } a \text { and } b \text { both positive, } \\
& =(a b)^{-\frac{1}{3}} \operatorname{arccot}(b / a)^{\frac{1}{2}} x+C \text {, for } a \text { and } b \text { both negative, } \\
& =\frac{1}{2}(-a b)^{-\frac{1}{2}} \log \frac{(-a b)^{\frac{1}{2}}-b x}{(-a b)^{\frac{1}{2}}+b x}+C \text {, for } a b \text { negative. } \\
& \int \frac{d x}{a+2 b x+c x^{2}}=\left(a c-b^{2}\right)^{-\frac{2}{2}} \arctan \frac{b+c x}{\left(a c-b^{2}\right)^{\frac{1}{2}}}+C, \text { for } a c-b^{2}>0, \\
& =\frac{1}{2}\left(b^{2}-a c\right)^{-\frac{1}{2}} \log \frac{\left(b^{2}-a c\right)^{\frac{3}{2}}-b-c x}{\left(b^{2}-a c\right)^{\frac{3}{3}}+b+c x}+C \text {, for } b^{2}-a c>0 . \\
& \int\left(a+x^{2}\right)^{\frac{3}{2}} d x=\frac{1}{2} x\left(a+x^{2}\right)^{\frac{1}{2}}+\frac{1}{2} a \log \left\{x+\left(a+x^{2}\right)^{3}\right\}+C . \\
& \int\left(a^{2}-x^{2}\right)^{\frac{1}{2}} d x=\frac{1}{2} x\left(a^{2}-x^{2}\right)^{\frac{1}{2}}+\frac{1}{2} a^{2} \operatorname{arc} \sin \frac{x}{a}+C . \\
& \int(a+b x)^{\frac{3}{3}} d x=\frac{2}{3}(a+b x)^{3} / b+C .
\end{aligned}
$$

* This is the formula for integration by parts.
\dagger Natural logarithms are used in this and the following integrals. For relation of natural to common logarithms see section \mathbf{I}, g.

$$
\begin{aligned}
& \int\left(a+2 b x+c x^{2}\right)^{\frac{1}{2}} d x=\frac{1}{2}(b+c x)\left(a+2 b x+c x^{2}\right)^{3} / c \\
& +\frac{1}{2}\left(a c-b^{2}\right) / c \int\left(a+2 b x+c x^{2}\right)^{-1} d x+C . \\
& \int(a+b x)^{-\frac{3}{2}} d x=2(a+b x)^{3} / b+C . \\
& \int(a+\beta x)(a+b x)^{-\frac{1}{2}} d x=\frac{2}{3}(3 a b-2 a \beta+\beta b x)(a+b x)^{\frac{1}{2}} / b^{a}+C . \\
& \int\left(a^{2}-x^{2}\right)^{-1} d x= \pm \arcsin \frac{x}{a}+C, \\
& =\mp \arccos \frac{x}{a}+C \text {, } \\
& =2 \arctan \left(\frac{a+x}{a-x}\right)^{\frac{1}{2}}+C . \\
& \int\left(a+x^{2}\right)^{-1} d x=\log \left\{x+\left(a+x^{2}\right)^{3}\right\}+C, \\
& =\frac{1}{2} \log \frac{x+\left(a+x^{2}\right)^{\frac{1}{2}}}{x-\left(a+x^{2}\right)^{\frac{1}{2}}}+C . \\
& \int\left(a+2 b x+c x^{2}\right)^{-\frac{1}{2}} d x=\frac{1}{\sqrt{c}} \log \left\{b+c x+\left(a c+b c x+c^{2} x^{2}\right)^{3}\right\}+C \text {, for } c>0, \\
& =-\frac{1}{\sqrt{-c}} \operatorname{arc} \sin \frac{b+c x}{\left(\bar{b}^{2}-a c\right)^{\frac{7}{2}}}+C \text {, for } c<0 . \\
& \int a^{x} d x=a^{x} / \log a+C, \quad \int e^{x} d x=e^{x}+C . \\
& \int \log x d x=x \log x-x+C . \\
& \int(\log x)^{n} x^{-1} d x=\frac{1}{n+1}(\log x)^{n+1}+C . \\
& \int \sin x d x=-\cos x+C, \quad \int \cos x d x=\sin x+C . \\
& \int \sin ^{2} x d x=\frac{1}{2} x-\frac{1}{4} \sin 2 x+C, \quad \int \cos ^{2} x d x=\frac{1}{2} x+\frac{1}{4} \sin 2 x+C \text {. } \\
& \int \tan x d x=-\log \cos x+C, \quad \int \cot x d x=\log \sin x+C . \\
& \int \frac{d x}{\sin x}=\log \tan \frac{1}{2} x+C, \quad \int \frac{d x}{\cos x}=\log \tan \frac{1}{2}\left(x+\frac{1}{2} \pi\right)+C . \\
& \int \frac{d x}{\sin ^{2} x}=-\cot x+C, \quad \int \frac{d x}{\cos ^{2} x}=\tan x+C . \\
& \int e^{a x} \sin b x d x=\frac{a \sin b x-b \cos b x}{a^{2}+b^{2}} e^{a x}+C . \\
& \int e^{a x} \cos b x d x=\frac{a \cos b x+b \sin b x}{a^{2}+b^{2}} e^{a x}+C . \\
& \int \arcsin x d x=x \arcsin x \pm\left(1-x^{2}\right)^{\frac{1}{2}}+C \text {. } \\
& \int \arccos x d x=x \arccos x \mp\left(\mathrm{I}-x^{2}\right)^{2}+C . \\
& \int \arctan x d x=x \arctan x-\frac{1}{2} \log \left(\mathrm{r}+x^{2}\right)+C . \\
& \int \operatorname{arccot} x d x=x \operatorname{arccot} x+\frac{1}{2} \log \left(\mathrm{x}+x^{2}\right)+C \text {. }
\end{aligned}
$$

b. Definite Integration.

$$
\begin{aligned}
\int_{a}^{n} \phi(x) d x= & \int_{a}^{b} \phi(x) d x+\int_{b}^{c} \phi(x) d x+\ldots \int_{m}^{n} \phi(x) d x \\
& \int_{a}^{b} \phi(x) d x=-\int_{b}^{a} \phi(x) d x . \\
& \int_{0}^{a} \phi(x) d x=
\end{aligned}
$$

If $\phi(x)=\phi(-x)$, an " even function" of x,

$$
\int_{0}^{a} \phi(x) d x=\int_{-a}^{0} \phi(x) d x=\frac{1}{2} \int_{-a}^{a} \phi(x) d x
$$

If $\phi(x)=-\phi(-x)$, an " odd function" of x,

$$
\int_{-a}^{0} \phi(x) d x=\int_{0}^{a} \phi(x) d x, \text { and } \int_{-a}^{+a} \phi(x) d x=0
$$

If A be the greatest and B the least value of $\phi(x)$ within the limits a and b,

$$
A(b-a)>\int_{a}^{b} \phi(x) d x>B(b-a)
$$

a formula useful in determining approximate values of integrals. See, e. g., section 6, d.

$$
\begin{gathered}
\text { If } u=\int_{a}^{b} \phi(x) d x, \\
\frac{d u}{d a}=-\phi(a), \quad \frac{d u}{d b}=\phi(b) . \\
\int_{0}^{\infty} \frac{d x}{\mathbf{I}+x^{2}}=\frac{1}{2} \pi . \\
\int_{0}^{\infty} \frac{d x}{a+x^{2}}=\int_{\mathbf{I}}^{\infty} \frac{d x}{\mathbf{I}+x^{2}}=\frac{1}{4} \pi . \\
\int_{0}^{\infty}=\frac{1}{2} \pi / \sqrt{ }(a b), \quad \int_{0}^{a} \frac{d x}{\sqrt{a^{2}-x^{2}}}=\frac{1}{2} \pi .
\end{gathered}
$$

$$
\begin{gathered}
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}, \quad \int_{0}^{\infty} e^{-a^{2} x^{2}} d x=\frac{1}{2} \sqrt{ }\left(\pi / a^{2}\right) \\
\int_{0}^{\infty} e^{-a^{2} x^{2}} x^{2 n} d x=1 \cdot 3 \cdot 5 \cdots(2 n-1) a^{-n}(2 a)^{-(n+1)} \sqrt{n} x_{1} \\
\int_{0}^{\infty} e^{-a x} x^{-1} d x=\sqrt{ }(\pi / a) \\
\int_{0}^{\pi} \sin m x \sin n x d x=\int_{0}^{\pi} \cos m x \cos n x d x=0
\end{gathered}
$$

when m and n are unequal integers.
$\int_{0}^{\pi} \sin m x \cos n x d x=\frac{2 m}{m^{2}-n^{2}}$, for m and n integers and $m-n$ odd,
$=0$, for m and n integers and $m-n$ even.

$$
\begin{gathered}
\int_{0}^{\pi} \sin ^{2} m x d x=\int_{0}^{\pi} \cos ^{2} m x d x=\frac{1}{2} \pi, \text { for } m \text { an integer. } \\
\int_{0}^{\frac{1}{2} \pi} \sin ^{n} x d x=\int_{0}^{\frac{1}{2} \pi} \cos ^{n} x d x=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{1}{2}(n-1)} d x \\
\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} d x=\int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} d x=\sqrt{ }(\pi / 2) \\
\int_{0}^{\infty} \sin x^{2} d x=\int_{0}^{\infty} \cos x^{2} d x=\frac{1}{2} \sqrt{ }(\pi / 2) \\
\int_{0}^{\infty} e^{-a^{2} x^{2}} \cos 2 b x d x=\frac{1}{2} e^{-(b / a)^{2}} \sqrt{ }(\pi / a) \\
\int_{0}^{\infty} e^{-a^{2} x^{2}} \sin 2 b x d x=0 .
\end{gathered}
$$

MENSURATION.

r. Lines.

a. In a circle.
$r=$ radius of circle,
$c=$ length of any chord,
$s=$ arc subtended by c,
$a=$ angle corresponding to s,
$h=$ height of arc s above c, or perpendicular distance from middle point of are to chord.

$$
\begin{aligned}
& \text { Circumference }=2 \pi r \text {, } \\
& \pi=3.14159265, \quad \log \pi=0.49714987, \\
& 2 \pi=6.28318531, \quad \log 2 \pi=0.79817987 . \\
& c=2 r \sin \frac{1}{2} a, \quad s=r a .
\end{aligned}
$$

Length of perpendicular from center on chord

$$
\begin{aligned}
& =r \cos \frac{1}{2} a \\
& =\left(r^{2}-\frac{1}{4} c^{2}\right)^{\frac{3}{2}} \\
& =r\left\{1-\frac{1}{2}\left(\frac{c}{2 r}\right)^{2}-\frac{1}{8}\left(\frac{c}{2 r}\right)^{4}-\frac{1}{16}\left(\frac{c}{2 r}\right)^{0}-\ldots\right\} \text {. } \\
& h=r\left(1-\cos \frac{1}{2} a\right) \\
& =2 r \sin ^{2} \frac{1}{4} a \\
& =r-\left(r^{2}-\frac{1}{4} c^{2}\right)^{\frac{1}{2}} \\
& =\frac{1}{8} r\left\{\left(\frac{c}{r}\right)^{2}+\frac{1}{16}\left(\frac{c}{r}\right)^{4}+{ }^{\frac{1}{2} \frac{18}{8}}\left(\frac{c}{r}\right)^{8}+\ldots\right\} . \\
& s-c=\frac{1}{24} s\left(a^{2}-\frac{1}{80} a^{4}+\ldots\right) \\
& =\frac{8}{3} \frac{h^{2}}{s}\left\{\mathrm{I}+\frac{28}{1}\left(\frac{h}{s}\right)^{2}+\ldots\right\} . \\
& a=8\left\{\frac{h}{s}+\frac{4}{3}\left(\frac{h}{s}\right)^{8}+\ldots\right\} \text {. } \\
& \text { b. In regular polygon. } \\
& r=\text { radius of inscribed circle, } \\
& R=\text { radius of circumscribed circle, } \\
& n=\text { number of sides, } \\
& s=\text { length of any side, } \\
& \beta=\text { angle subtended by } s \text {, } \\
& p=\text { perimeter of polygon. }
\end{aligned}
$$

$$
\begin{aligned}
& \beta=360^{\circ} / n, \\
& s=2 r \tan \frac{1}{2} \beta=2 R \sin \frac{1}{2} \beta, \\
& p=n s=2 n r \tan \frac{1}{2} \beta=2 n R \sin \frac{1}{2} \beta .
\end{aligned}
$$

See table under c, below.
c. In ellipse.

$$
\begin{aligned}
a & =\text { semi-axis major }, \\
b & =\text { semi-axis minor, } \\
e & =\text { eccentricity }=\left(1-b^{2} / z^{2}\right)^{\frac{1}{2}}, \\
P & =\text { perimeter of ellipse }, \\
n & =(a-b) /(a+b) \\
& =\frac{1-\sqrt{1-e^{2}}}{1+\sqrt{1-e^{2}}}=\frac{e^{2}}{4}+\frac{e^{4}}{8}+\frac{5 e^{6}}{64}+\cdots \cdots
\end{aligned}
$$

Distance from centre to focus $=a e$,
Distance from focus to extremity of major axis $=a(\mathrm{x}-e)$,
Distance from focus to extremity of minor axis $=a$.
$P=\pi(a+b)\left(1+\frac{1}{4} n^{2}+\frac{1}{64} n^{4}+\frac{1}{\frac{1}{56}} n^{6}+\ldots\right)$
$=\pi(a+b) q$, say, where q stands for the series in n. The values of q corresponding to a few values of n are :-

n	q	n	q
0	1.0000	0.5	1.0635
0.1	1.0025	0.6	1.0922
0.2	1.0100	0.7	1.1267
0.3	1.0226	0.8	1.1677
0.4	1.0404	0.9	1.2155
		1.0	1.2732

2. Areas.

a. Area of plane triangle.
(See table on p. xix.)
b. Area of Trapezoid.
$b_{1}=$ upper base of trapezoid,
$b_{2}=$ lower base of trapezoid,
$a=$ altitude of trapezoid, or perpendicular distance between bases.

$$
\text { Area }=\frac{1}{2}\left(b_{1}+b_{2}\right) a .
$$

c. Area of regular polygon.

$$
\begin{aligned}
& A=\text { area, } \\
& r, R=\text { radii of inscribed and circumscribed circles, } \\
& s=\text { length of any side } \\
& n=\text { number of sides, } \\
& \beta=\text { angle subtended by } s=360^{\circ} / n . \\
& A=n r^{2} \tan \frac{1}{2} \beta=\frac{1}{2} n R^{2} \sin \beta=\frac{1}{4} n s^{2} \cot \frac{1}{2} \beta . \\
& \quad \text { TaBLE OF VALUES. }
\end{aligned}
$$

n	β	A	A	R	s
3	120°	$0.4330 s^{2}$	$1.2990 R^{2}$	0.5774 S	1.7321 R
4	90	1.0000	2.0000	0.7071	1.4142
5	$7{ }^{2}$	1.7205	2.3776	0.8507	1.1756
6	60	2.5981	2.5981	1.0000	1.0000
7	$51 \frac{3}{7}$	3.6339	2.7364	1.1524	0.8678
8	45	5.8284	2.8284	1.3066	0.7654
9	40	6.1818	2.8925	1.4619	0.6840
10	36	7.6942	2.9389	1.6180	0.6180
II	$32^{1} \mathrm{I}^{8}$	9.3656	2.9735	1.7747	0.5635
12	30	11.1962	3.0000	1.9319	0.5176
13	$288{ }_{13}$	13.1858	3.0207	2.0893	0.4786
14	25 岩	15.3345	3.0372	2.2470	0.4450
15	24	17.6424	3.0505	2.4049	0.4158
16	22 $\frac{1}{2}$	20.1094	3.0615	2.5629	0.3902

d. Area of circle, circular annulus, etc.
$r=$ radius of circle,
$d=$ diameter,
$a=$ angle of any sector,
$r_{1}, r_{2}=$ smaller and greater radii of an annulus.
Area of circle $=\pi r^{2}=\frac{1}{4} \pi d^{2}$,
$\pi=3.14159265, \quad \log \pi=0.49714987$.
Area of sector $=a r^{2}$, for α in arc,
$=\pi r^{2}(\alpha / 360)$, for a in degrees.
Area of annulus $=\pi\left(r_{2}^{2}-r_{1}^{2}\right)$.
e. Area of ellipse.
$a, b=$ semi axes respectively
$e=$ eccentricity $=\left(a^{2}-b^{2}\right)^{\frac{1}{2}} / a$
$=\{(a+b)(a-b)\}^{\frac{1}{2}} / a$.

$$
\begin{aligned}
\text { Area of ellipse } & =\pi a b \\
& =\pi a^{2} \sqrt{1-e^{2}} \\
& =\pi a^{2} \cos \phi, \text { if } e=\sin \phi
\end{aligned}
$$

f. Surface of sphere, etc.

$r=$ radius of sphere,
$\phi_{1}, \phi_{2}=$ latitudes of parallels bounding a zone,
$\epsilon=$ spherical excess of a spherical triangle
$=$ sum of spherical angles less 180°,

$$
\text { Total surface }=4 \pi r^{2}
$$

Surface of zone $=2 \pi r^{2}\left(\sin \phi_{2}-\sin \phi_{1}\right)$,
$=4 \pi r^{2} \cos \frac{1}{2}\left(\phi_{2}+\phi_{1}\right) \sin \frac{1}{2}\left(\phi_{2}-\phi_{1}\right)$.
Surface of spherical triangle $=\gamma^{2} \epsilon$, for ϵ in arc,

$$
=r^{2} \epsilon / \rho^{\prime \prime}, \text { for } \epsilon \text { in seconas, }
$$

$\rho^{\prime \prime}=206264.8^{\prime \prime}, \quad \log \rho^{\prime \prime}=5 \cdot 3 \mathrm{r} 4425 \mathrm{r} 3$.
g. Surface of right cylinder.
$r=$ radius of bases of cylinder,
$h=$ altitude of cylinder.
Area cylindrical surface $=2 \pi r h$.
Total surface $=2 \pi r(r+h)$.
h. Surface of right cone.
$r=$ radius of base, $h=$ altitude, $s=$ slant height.

Conical surface $=\pi r s=\pi r\left(h^{2}+r^{2}\right)^{\frac{1}{2}}$,
Total surface $=\pi r(s+r)$.
i. Surface of spheroid.
$a, b=$ semi axes,
$e=$ eccentricity $=\{(a+b)(a-b)\}^{\frac{1}{2}} / a$.
Surface of oblate spheroid $=2 \pi a^{2}\left\{\mathrm{I}+\frac{\mathrm{I}-e^{2}}{2 e} \log \left(\frac{\mathrm{I}+e}{1-e}\right)\right\}^{*}$

$$
=4 \pi a^{2}\left(\mathrm{x}-\frac{1}{3} e^{2}-\frac{1}{15} e^{4}-\frac{1}{35} e^{6}-\ldots\right) .
$$

Surface of prolate spheroid $=2 \pi a b\left\{\left(\mathrm{r}-e^{2}\right)^{\frac{1}{2}}+\frac{\arcsin e}{e}\right\}$

$$
=4 \pi a b\left(\mathrm{I}-\frac{1}{6} e^{2}-\frac{1}{40} e^{4}-\mathrm{Tt} e^{6}-\ldots\right)
$$

* The logarithm in this formula refers to the natural or "Napierian" system. For areas of zones and quadrilaterals of an oblate spheroid, see pp. 1-lii.

3. Volumes.

a. Volume of prism.

$$
\begin{gathered}
A=\text { area of base, } \quad h=\text { altitude, } \quad V=\text { volume. } \\
V=A h .
\end{gathered}
$$

For an oblique triangular prism whose edges a, b, c are inclined at an angle a. to the base,

$$
V=\frac{1}{3}(a+b+c) A \sin a .
$$

b. Volume of pyramid.

$$
\begin{gathered}
A=\text { area of base, } \begin{array}{c}
h=\text { altitude, } \quad V=\text { volume } \\
V=\frac{1}{3} A h .
\end{array}
\end{gathered}
$$

For a truncated pyramid whose parallel upper and lower bases nave areas \boldsymbol{A}_{1} and \boldsymbol{A}_{2} respectively and whose distance apart is h,

$$
V=\frac{\frac{1}{3}}{3} h\left(A_{2}+\sqrt{A_{2} A_{1}}+A_{1}\right) .
$$

The volume of a wedge and obelisk may be expressed by means of the volumes of pyramids and prisms.

$$
\begin{aligned}
& \text { c. Volume of right circular cylinder. } \\
& r=\text { radius of base, } \quad h=\text { altitude, } \quad V=\text { volume. } \\
& \qquad V=\pi r^{2} h . \\
& \pi=3.14559265, \quad \log \pi=0.49714987 .
\end{aligned}
$$

For an obliquely truncated cylinder (having a circular base) whose shortest and longest elements are h_{1} and h_{2} respectively,

$$
V=\frac{1}{2} \pi r^{2}\left(h_{2}+h_{1}\right) .
$$

For a hollow cylinder the radii of whose inner and outer surfaces are r_{1} and r_{2} respectively, and whose altitude is h,

$$
V=\pi h\left(r_{2}^{\frac{2}{2}}-r_{1}^{2}\right)
$$

d. Volume of right cone with circular base.
$r=$ radius of base,$\quad h=$ altitude, $\quad V=$ volume.

$$
V=\frac{1}{3} \pi r^{2} h
$$

For a right truncated cone the radii of whose upper and lower parallel bases are r_{1} and r_{2} respectively, and whose altitude is h,

$$
V=\frac{1}{3} \pi h\left(r_{2}^{2}+r_{2} r_{1}+r_{4}^{2}\right) .
$$

e. Volume of sphere and spherical segments.

$$
r=\text { radius of sphere, } \quad h=\text { altitude of segment, } \quad V=\text { volume }
$$

For the entire sphere

$$
\begin{aligned}
& V=\frac{S_{3}}{3} \pi r^{8}=4.1888 r^{8} \text { approximately. } \\
& \text { (For } \pi \text { and } \log \pi \text { see } c \text { above.) }
\end{aligned}
$$

For a spherical segment of height h

$$
V=\pi h^{2}\left(r-\frac{1}{3} h\right) .
$$

For a zone, or difference in volume of two segments whose altitudes are h_{1} and h_{2} respectively

$$
\begin{aligned}
V & =\pi r\left(h_{2}^{2}-h_{1}^{2}\right)-\frac{1}{3} \pi\left(h_{2}^{3}-h_{1}^{3}\right) \\
& =\frac{1}{6} \pi \Delta h\left(3 r_{2}^{2}+3 r_{1}^{2}+\Delta h^{2}\right),
\end{aligned}
$$

where r_{1} and r_{2} are the radii of the bases of the zone and $\Delta h=h_{2}-h_{b}$

$$
\begin{gathered}
\text { f. Volume of ellipsoid. } \\
a, b, c=\text { semi axes, } V=\text { volume. } \\
V=\frac{4}{3} \pi a b c .
\end{gathered}
$$

For an ellipsoid of revolution about
the a-axis, $V=\frac{4}{3} \pi a b^{2}$, the b-axis, $V=\frac{4}{3} \pi a^{2} b_{0}$

UNITS.

i. Standards of Length and Mass.

The only systems of units used extensively at the present day are the British and metric. The fundamental units in these systems are those of time, length, and mass. From these all other units are derived. The unit of time, the mean solar second, is common to both systems.

The standard unit of length in the British system is the Imperial Yard, which is defined to be the distance between two marks on a metallic bar, kept in the Tower of London, when the temperature of the bar is $62^{\circ} \mathrm{F}$.

The standard unit of mass in the British system is the Imperial Pound Avoirdupois. It is a cylindrical mass of platinum marked "P. S. 1844, I lb.," preserved in the office of the Exchequer at Westminster.

In the metric system the standard unit of length is the Metre, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures.

The standard of mass in the metric system is the Kilogramme, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures.

Both systems of units have been legalized by the United States. Virtually, however, the material standards of length and mass of the United States are cerain Prototype Metres and certain Prototype Kilogrammes. The present status of the two systems of units so far as it relates to the United States is set forth in the following statement from the Superintendent of Standard Weights and Measures, bearing the date April 5, 1893.

Fundamental Standards of Length and Mass.*

"While the Constitution of the United States authorizes Congress to 'fix the itandard of weights and measures,' this power has never been definitely exercised, and but little legislation has been enacted upon the subject. Washington regarded the matter of sufficient importance to justify a special reference to it in his first annual message to Congress (January, i790), and Jefferson, while Secretary of State, prepared a report at the request of the House of Representatives, in which he proposed (July, i790) 'to reduce every branch to the decimal ratio already established for coins, and thus bring the calculation of the principal affairs of life within the arithmetic of every man who can multiply and divide.' The consideration of the subject being again urged by Washington, a committee

[^1]of Congress reported in favor of Jefferson's plan, but no legislation followed. In the mean time the executive branch of the Government found it necessary to procure standards for use in the collection of revenue and other operations in which weights and measures were required, and the Troughton 82 -inch brass scale was obtained for the Coast and Geodetic Survey in 1814, a platinum kilogramme and metre, by Gallatin, in 1821, and a Troy pound from London in 1827 , also by Gallatin. In 1828 the latter was, by act of Congress, made the standard of mass for the Mint of the United States, and although totally unfit for such purpose it has since remained the standard for coinage purposes.
"In 1830 the Secretary of the Treasury was directed to cause a comparison to be made of the standards of weight and measure used at the principal customhouses, as a result of which large discrepancies were disclosed in the weights and measures in use. The Treasury Department, being obliged to execute the constitutional provision that all duties, imposts, and excises shall be uniform throughout the United States, adopted the Troughton scale as the standard of length; the avoirdupois pound to be derived from the Troy pound of the Mint as the unit of mass. At the same time the Department adopted the wine gallon of 231 cubic inches for liquid measure and the Winchester bushel of 2150.42 cubic inches for dry measure. In 1836 the Secretary of the Treasury was authorized to cause a complete set of all weights and measures, adopted as standards by the Department for the use of custom-houses and for other purposes, to be delivered to the Governor of each State in the Union for the use of the States respectively, the object being to encourage uniformity of weights and measures throughout the Union. At this time several States had adopted standards differing from those used in the Treasury Department, but after a time these were rejected, and finally nearly all the States formally adopted by act of legislature the standards which had been put in their hands by the National Government. Thus a good degree of uniformity was secured, although Congress had not adopted a standard of mass or of length other than for coinage purposes as already described.
"The next and in many respects the most important legislation upon the subject was the Act of July 28, 1866, making the use of the metric system lawful throughout the United States, and defining the weights and measures in common use in terms of the units of this system. This was the first general legislation upon the subject, and the metric system was thus the first, and thus far the only system made generally legal throughout the country.
"In 1875 an International Metric Convention was agreed upon by seventeeri governments, including the United States, at which it was undertaken to establish and maintain at common expense a permanent International Bureau of Weights and Measures, the first object of which should be the preparation of a new international standard metre and a new international standard kilogramme, copies of which should be made for distribution among the contributing governments. Since the organization of the Bureau, the United States has regularly contributed to its support, and in 1889 the copies of the new international prototypes were ready for distribution. This was effected by lot, and the United States received metres Nos. 21 and 27 , and kilogrammes Nos. 4 and 20. The metres and kilogrammes are made from the same material, which is an alloy of platinum with ten per cent of iridium.
"On January 2, 1890, the seals which had been placed on metre No. 27 and kilogramme No. 20, at the International Bureau of Weights and Measures near Paris, were broken in the Cabinet room of the Executive Mansion by the President of the United States, in the presence of the Secretary of State and the Secretary of the Treasury, together with a number of invited guests. They were thus adopted as the National Prototype Metre and Kilogramme.
"The Troughton scale, which in the early part of the century had been tentatively adopted as a standard of length, has long been recognized as quite unsuitable for such use, owing to its faulty construction and the inferiority of its graduation. For many years, in standardizing length measures, recourse to copies of the imperial yard of Great Britain had been necessary, and to the copies of the metre of the archives in the Office of Weights and Measures. The standard of mass originally selected was likewise unfit for use for similar reasons, and had been practically ignored.
"The recent receipt of the very accurate copies of the International Metric Standards, which are constructed in accord with the most advanced conceptions of modern metrology, enables comparisons to be made directly with those standards, as the equations of the National Prototypes are accurately known. It has seemed, therefore, that greater stability in weights and measures, as well as much higher accuracy in their comparison, can be secured by accepting the international prototypes as the fundamental standards of length and mass. It was doubtless the intention of Congress that this should be done when the International Metric Convention was entered into in 1875 ; otherwise there would be nothing gained from the annual contributions to its support which the Government has constantly made. Such action will also have the great advantage of putting us in direct relation in our weights and measures with all civilized nations, most of which have adopted the metric system for exclusive use. The practical effect upon our customary weights and measures is, of course, nothing. The most careful study of the relation of the yard and the metre has failed thus far to show that the relation as defined by Congress in the Act of 1866 is in error. The pound as there defined, in its relation to the kilogramme, differs from the imperial pound of Great Britain by not more than one part in one hundred thousand, an error, if it be so called, which utterly vanishes in comparison with the allowances in all ordinary transactions. Only the most refined scientific research will demand a closer approximation, and in scientific work the kilogramme itself is now universally used, both in this country and in England.*

[^2]Equations.
I yard $=\frac{3^{600}}{3937}$ metre.
I pound avoirdupois $=\frac{1}{2 \cdot 2046}$ kilo.
A more precise value of the English pound avoirdupois is $\frac{1}{2 \cdot 20462}$ kilo., differing from the above by about one part in one hundred thousand, but the equation established by law is sufficiently accurate for all ordinary conversions.
As already stated, in work of high precision the kilogramme is now all but universally used, and no conversion is required.
"In view of these facts, and the absence of any material normal standards of customary weights and measures, the Office of Weights and Measures, with the approval of the Secretary of the Treasury, will in the future regard the International Prototype Metre and Kilogramme as fundamental standards, and the customary units, the yard and the pound, will be derived therefrom in accordance with the Act of July 28, r866. Indeed, this course has been practically forced upon this office for several years, but it is considered desirable to make this formal announcement for the information of all interested in the science of metro'ogy or in measurements of precision.

T. C. Mendenhall, Superintendent of Standard Weights and Measures.

```
"Approved:
    J. G. Carlisle,
        Secretary of the Treasury.
April 5, 1893."
```

No ratios of the yard to the metre and of the pound to the kilogramme have as yet been adopted by international agreement; but precise values of these ratios will doubtless be determined and adopted within a few years by the International Bureau of Weights and Measures. In the mean time, it will suffice for most purposes to use the values of the ratios adopted provisionally by the Office of Standard Weights and Measures of the United States. These values are -

$$
\mathrm{I} \text { yard }=\frac{3600}{89} \text { metres, or } \mathrm{I} \text { merre }=\frac{39}{38} 87 \text { yards, }
$$

1 pound $=\frac{1080}{2000} 0$
These ratios were legalized by Act of Congress in r866. Expressed decimally these values are * -

$$
\begin{gathered}
\mathrm{r} \text { yard }=0.914402 \text { metres, } \quad \mathrm{r} \text { metre }=1.09361 \mathrm{r} \text { yards, } \\
\mathrm{r} \text { pound }=0.45359 \text { kilogrammes, } \quad \mathrm{r} \text { kilogramme }=2.20462 \text { pounds. }
\end{gathered}
$$

The above values of the relations of the standards of the British and Metric systems of units are adopted in this work. Tables I and 2 give the equivalents of multiples of the standard units and also equivalents of multiples of the derived units of surface and volume. These tables are published by the Office of Standard Weights and Measures of the United States, and are here republished by permission of the Superintendent of that Office.

2. British Measures and Weights.

a. Linear measures.

The unit of linear measure is the yard. Its principal sub-multiples and multiples are the inch ; the foot ; the rod, perch, or pole ; the furlong; and the mile. The following table exhibits the relations among these measures:-

[^3]| Inches. | Feet. | Yards. | Rods. | Furlongs. | Miles. |
| ---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 0.083 | 0.028 | 0.00505 | 0.00012626 | 0.0000157828 |
| 12 | 1. | 0.333 | 0.06060 | 0.00151515 | 0.00018939 |
| 36 | 3. | 1. | 0.1818 | 0.004545 | 0.00056818 |
| 198 | 16.5 | 5.5 | 1. | 0.025 | 0.003125 |
| 7920 | 660. | 220. | 40. | 1. | 0.125 |
| 63360 | 5280. | 1760. | 320. | 8. | 1. |

Other measures are the -
Surveyor's or Gunter's chain $=4$ rods $=66$ feet $=100$ links of 7.92 inches each.

Fathom $=6$ feet; Cable length $=120$ fathoms.
Hand $=4$ inches ; Palm $=3$ inches; Span $=9$ inches.

b. Surface or square measures.

The unit of square measure is the square yard. Its relations to the principal derived units in use are shown in the following table:-

Sq. feet.	Sq. yards.	Sq. rods.	Roods.	Acres.	Sq. miles.
	1.	0.1 III	0.00367309	0.000091827	0.000022957
9.	I.	0.0330579	0.000826448	0.000206612	
27.25	30.25	I.	0.025	0.00625	
10890.	1210.	40.	I.	0.25	
43560	4840.	160.	4.	I.	
27878400	3097600.	102400.	2560.	640.	I.

c. Measures of capacity.

The unit of capacity for dry measure is the bushel (2150.4 cubic inches about). The units of capacity for liquid measure are the British gallon (of 277.3 cubic inches about) and the wine gallon (of 23 r cubic inches, nominally). The latter gallon is most commonly used in the United States. The following table shows the relations of the sub-multiples and multiples of the bushel and gallon :-

Dry Measures.			Liquids.	
Pint	$=\frac{1}{64}$	shel.	Gill	$=\frac{1}{32}$ gall.
Quart $=2$ pints	$=\frac{1}{32}$	"	Pint $=4$ gills	$=\frac{1}{8}$ "
Peck $=8$ quarts	$=\frac{1}{4}$	"	Quart $=2$ pints	= 4 "
Bushel $=4$ pecks	$=1$		Gallon $=4$ quarts	$=1$
			Barrel $=31 \frac{1}{2}$ gallons	$=31 \frac{1}{2}$
			Hhd. $=2$ barrels	$=63$ "

Besides the above measures of capacity the following volumetric units are used: —

Cubic foot $=1728$ cubic inches.
Cubic yard $=27$ cubic feet $=46656$ cubic inches.
Board-measure foot $=1$ square foot $X \mathrm{r}$ inch thickness $=144$ cubic inches.
Perch (of masonry) $=$ r perch (16.5 feet) length X I foot height X r. 5 feet thickness $=\mathbf{2 4 . 7 5}$ cubic feet; $\mathbf{2 5}$ cubic feet are commonly called a perch for convenience.

Cord (of wood) $=8$ feet length $\times 4$ feet breadth $\times 4$ feet height. $=128$ cubic feet.

d. Measures of weight.

The unit of weight is the avoirdupois pound. One 7000th part of this is called a grain, and 5760 such grains make the troy pound. The sub-multiples and multiples of these two pounds are exhibited in the following table:-

Avoirdupois.	Troy.
Dram $\quad={ }_{2}^{\frac{1}{5} 6} \mathrm{lb}$.	Grain $\quad={ }_{57}{ }^{\frac{1}{6} 6 \mathrm{l}} \mathrm{l}$.
Ounce $\quad=16 \mathrm{drs} .=\frac{1}{16}{ }^{\prime}$	Pennyweight $=24 \mathrm{grs} .=\frac{1}{24}{ }^{\frac{1}{0}}{ }^{\prime}$
Pound $=16 \mathrm{ozs} .=1{ }^{\prime}$	Ounce $\quad=20 \mathrm{dwt}={ }_{1}^{12}{ }^{\frac{1}{2}}$
Quarter $=28 \mathrm{lbs} .=28{ }^{\prime}$	Pound $=12$ ozs. $=1{ }^{\prime}$
Hundred-wt. $=4$ qrs. $=112{ }^{\text {a }}$	
Longton $=20 \mathrm{cwt}$. $=2240{ }^{\circ}$	
Short ton $=2000{ }^{\prime}$	

3. Metric Measures and Weights.

As explained in section r above, the standards of length and mass in the metric system are the metre and the kilogramme. Two material representatives of each of these standards are possessed by the United States and preserved at the Office of Standard Weights and Measures at Washington, D. C.
The standards of length are Prototype Metres Nos. 21 and 27. These are platinum iridium bars of X cross section, and their lengths are defined by lines ruled on their neutral surfaces. Their lengths at any temperature t Centigrade are given by the following equations:-

$$
\begin{aligned}
& \text { Prototype No. } 2 \mathrm{I}=\mathrm{r}^{m}+{ }^{2} \mu_{5}+8{ }^{\mu} 665 t+0{ }^{\mu} 00100 t^{2}, \\
& \text { Prototype No. } 27=\mathrm{r}^{m}-1^{\mu} 6+8 . \mu^{\mu} 67 t+0{ }^{\mu} 00100 t^{2},
\end{aligned}
$$

where the symbol μ stands for one micron, or one millionth of a metre. The probable errors of these Prototypes may be taken as not exceeding $\pm 0 . \mu_{\mu_{2}}$, or $1 / 5000$ oooth of a metre for temperatures between 0° and $30^{\circ} \mathrm{C}$.

The standards of mass are Prototype Kilogrammes Nos. 4 and 20. They are cylindrical masses of platinum iridium. Their masses and volumes are given by the following equations :-

where the -
Symbol kg stands for one kilogramme, Symbol $m g$ stands for one milligramme $=0 .{ }^{k j 000001}$, Symbol $m l$ stands for one millilitre $=$ one cubic centimetre.

The definitive probable error assigned to the Prototype Kilogrammes by the International Bureau is $\pm 0.0^{m 002}$, or $1 / 500000000$ th of a kilogramme.

The act of Congress approved July 28, 1866, authorizing the use of the metric system in the United States, provides that the tables in a schedule annexed shall be recognized "as establishing, in terms of the weights and measures now in use in the United States, the equivalents of the weights and measures expressed therein in terms of the metric system; and said tables may be lawfully used for computing, determining, and expressing, in customary weights and measures, the weights and measures of the metric system." The following copy of that schedule gives the denominations of the multiples and sub-multiples of the measures of length, surface, capacity, and weight in the metric system as well as their legalized equivalents in British units.

Schedule annexed to Act of July 28, 1866. Measures of Length.						
Metric Denominations.			Values in Metres. \vdots \vdots 10000. 1000. 100. 10. 0 0.1 0.1 0.01 0.001 		Equivalents in Denominatioas in Use.	
Myriametre Kilometre Dectometre Metre Decimetre Centimetre Millimetre .					6.2137 miles. 0.62137 mile, or 3280 feet and 10 inches. 328 feet and 1 inch. 393.7 inches. 39.37 inches. 3.937 inches. 0.3937 inch. 0.0394 inch.	
Measures of Surface.						
Metric Denominations.			Values in Square Metres.		Equivalents in Denomioations in Use.	
			$\begin{gathered} 10000 \\ 100 \\ 1 \end{gathered}$		2.475 acres. 119.6 square yards. r550 square inches	
Measures of Capacity.						
Metric Deaominations and Values.				Equivalents in Denominations in Use.		
Names.	$\xrightarrow{\text { No. of }}$ Litres.		c Measure.		Measure.	Liquid or Wine Measure.
	$\begin{gathered} \text { rooo. } \\ \text { 100. } \\ \text { ro. } \\ \text { 1. } \\ 0.1 \\ 0.01 \\ 0.01 \\ 0.001 \end{gathered}$	I cubic metre . o.r cubic metre ro cubic decimetres y cubic decimetre. io cubic centimetres. I cubic centimetre		1. 308 cubic yards 2 bus. and 3.35 pks. 9.08 quarts. 0.908 quart. . 6.1022 cubic inches 0.6102 cubic inch o.06I cubic inch		$\therefore \quad:$264.17 gallons. 26.417 gallons. 2.647 gallons. r.0567 quarts. 0.845 gill. 0.338 0.27 0.27 fluid-ounce.
Measures of Weight.						
Metric Denominations and Values.						Equivalents in Denominations in Use.
Names.	Number of Grammes.		Weight of what Quantity of Water at Maximum Density.			Avoirdupois Weight.
Millier or tomeau Quintal Myriagramme Kilogramme, or kilo Hectogramme Decagramme Gramme Decigramme Centigramme Milligramme			I cubic metre 7 hectolitre to litres 1 litre I decilitre to cubic centimetres I cubic centimetre o.I cubic centimetre I cubic millimetre			2204.6 pounds. 220.46 pounds 22.046 pounds. 2.2046 pounds 3.5274 ounces. 0.3527 ounce. 15.432 grains. 0.1543 grain. 0.0154 grain.

4. The C. G. S. System of Units.

The C. G. S. system of units is a metric system in which the fundamental units are the centimetre, the gramme, and the mean solar second. It is the system now generally used for the expression of physical quantities.

The most important of the derived units in the C. G. S. system, their equivalents in terms of ordinary units, and their dimensions in terms of the fundamental units of length, mass, and time, are given in the Appendix to this volume.

For an elaborate consideration of the subject of units and their interrelations the reader may be referred to "Units and Physical Constants," by J. D. Everett, London, Macmillan \& Co., 12 mo , $4^{\text {th }}$ ed., 189 I.

GEODESY.

I. Form of the Earth. The Earth's Spherotd. The Geotd.

The shape of the earth is defined essentially by the sea surface, which embraces about three fourths of the entire surface. The sea surface is an equipotential surface due to the attraction of the earth's mass and to the centrifugal force of its rotation. We may imagine this surface to extend through the continents, and thus to be continuous. Its position at any continental point is the height at which water would stand if a canal connected the point with the ocean.
Geodetic measurements show that this surface is represented very closely by an oblate spheroid, whose shorter axis coincides with the rotation axis of the earth. This is called the earth's spheroid. The actual sea surface, on the other hand, is called the geoid. With respect to the spheroid the geoid is a wavy surface lying partly above and partly below; but the extent of the divergence of the two surfaces is probably confined to a few hundred feet.

2. Adopted Dimensions of Earth's Spheroid.

The dimensions of the earth's spheroid here adopted are those of General A. R. Clarke, published in 1866, to wit:

Semi major axis, $a=20926062$ English feet.
Semi minor axis, $b=2085512 \mathrm{I}$ " "

3. Auxiliary Quantities.

The following quantities are of frequent use in geodetic formulas:-

$$
\begin{gathered}
e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}, \text { the eccentricity of generating ellipse, } \\
f=\frac{a-b}{a}, \text { the flattening, ellipticity, or compression, } \\
n=\frac{a-b}{a+b} \\
b=a \sqrt{1-e^{2}}=a(1-f)=a \frac{1-n}{1+n} \\
e^{2}=2 f-f^{2} \\
f=1-\sqrt{1-e^{2}}=\frac{e^{2}}{2}+\frac{e^{4}}{8}+\frac{e^{6}}{16}+\frac{5 e^{8}}{128}+\ldots \\
=\frac{2 n}{1+n}=2\left(n-n^{2}+n^{8}-n^{4}+\ldots\right)
\end{gathered}
$$

$$
\begin{gathered}
n=\frac{f}{2-f}=\left(\frac{1}{2} f\right)+\left(\frac{1}{2} f\right)^{2}+\left(\frac{1}{2} f\right)^{8}+\left(\frac{1}{2} f\right)^{4}+\ldots \\
e^{2}=\frac{4 n}{(1+n)^{2}}=4\left(n-2 n^{2}+3 n^{8}-4 n^{4}+\ldots\right) \\
m=\frac{e^{2}}{2-e^{2}}=\frac{e^{2}}{2}+\frac{e^{4}}{4}+\frac{e^{6}}{8}+\frac{e^{8}}{16}+\ldots \\
n=\frac{1-\sqrt{1-e^{2}}}{1+\sqrt{1-e^{2}}}=\frac{e^{2}}{4}+\frac{e^{4}}{8}+\frac{5 e^{6}}{64}+\frac{7 e^{8}}{128}+\ldots
\end{gathered}
$$

The numerical values of the most useful of these quantities and their logarithms are -

$$
\begin{aligned}
& a=20926062 \text { feet, } \\
& b=20855 \mathrm{I21} \text { feet, } \\
& e^{2}=0.00676866, \\
& m=0.00339583 \\
& n=0.00169792
\end{aligned}
$$

$$
\begin{aligned}
& \log \\
& 7.3206875, \\
& 7.3192127, \\
& 7.8305030-10, \\
& 7.5309454-10, \\
& 7.2299162-10 .
\end{aligned}
$$

4. Equations to Generating Ellipse of Spheroid.

With the origin at the centre of the ellipse, and with its axes as coördinate axes, the equation in Cartesian co-ordinates is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\mathbf{x} \tag{I}
\end{equation*}
$$

a and δ being the major and minor axes respectively, and x and y being parallel to those axes respectively.

For many purposes it is useful to replace equation (r) by the two following : -

$$
\begin{align*}
& x=a \cos \theta \\
& y=b \sin \theta \tag{2}
\end{align*}
$$

which give (I) by the elimination of θ. This angle is called the reduced latitude. See section 5 .

5. Latitudes used in Geodesy.

Three different latitudes are used in geodesy, namely: (1) Astronomical or geographical latitude; (2) geocentric latitude; (3) reduced latitude. The astronomical latitude of a place is the angle between the normal (or plumb line) at that place and the plane of the earth's equator ; or when the plumb line at the place coincides with the normal to the generating ellipse, it is the angle between that normal and the major axis of the ellipse. The geocentric latitude of a place is the angle between the equator and a line drawn from the place to the earth's centre; or it is the angle between the radius-vector of the place and the equator. The reduced latitude is defined by equations (2) in section 4 above. The geometrical relations of these different latitudes are shown in Fig. 1 by the notation given below.

In order to express the analytical relations between the different İatitudes let

Fig. 1.
$\phi=$ the astronomical latitude,
$\psi=$ the geocentric latitude,
$\theta=$ the reduced latitude.
Then, referring to equations (1) and (2) under section 4 above, and to Fig. I, it appears that

$$
\tan \phi=-\frac{d x}{d y}=+\frac{a^{2} y}{b^{2} x}
$$

$$
\tan \psi=\frac{y}{x}, \quad \tan \theta=\frac{a y}{b x}
$$

Hence

$$
\begin{aligned}
& \tan \psi=\frac{b^{2}}{a^{2}} \tan \phi=\left(1-e^{2}\right) \tan \phi \\
& \tan \theta=\left(1-e^{2}\right)^{\frac{1}{2}} \tan \phi=\left(1-e^{2}\right)^{-\frac{1}{2}} \tan \psi \\
& \phi-\psi=m \sin 2 \phi-\frac{1}{2} m^{2} \sin 4 \phi+\ldots, \\
& \phi-\theta=n \sin 2 \phi-\frac{1}{2} n^{2} \sin 4 \phi+\ldots .
\end{aligned}
$$

For the adopted spheroid

$$
\log \left(1-e^{2}\right)=9.9970504
$$

and

$$
\begin{aligned}
& \phi-\psi(\text { in seconds })=700 .^{\prime \prime} 44 \sin 2 \phi-1 . .^{\prime \prime} 19 \sin 4 \phi, \\
& \phi-\theta \text { (in seconds) }=350^{\prime \prime} 22 \sin 2 \phi-0 .^{.1} 30 \sin 4 \phi .
\end{aligned}
$$

6. Radil of Curvature.

$\rho_{m}=$ radius of curvature of meridian section of spheroid at any point whose latitude is $\phi=P O$, Fig. m ,
$\rho_{n}=$ radius of curvature of normal section perpendicular to the meridian at the same point $=P Q$, Fig. r,
$\rho_{\alpha}=$ radius of curvature of normal section making angle α with the meridian at same point.

$$
\begin{aligned}
\rho_{m} & =a\left(\mathrm{I}-e^{2}\right)\left(\mathrm{I}-e^{2} \sin ^{2} \phi\right)^{-\frac{3}{2}}, \\
\rho_{n} & =a\left(\mathrm{I}-e^{2} \sin ^{2} \phi\right)^{-\frac{1}{2}} \\
\frac{\mathrm{I}}{\rho_{a}} & =\frac{\cos ^{2} a}{\rho_{m}}+\frac{\sin ^{2} \alpha}{\rho_{n}} \\
& =\frac{\mathrm{I}}{a}\left(\mathrm{I}+\frac{e^{2}}{\mathrm{I}-e^{2}} \cos ^{2} \phi \cos ^{2} a\right)\left(\mathrm{I}-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}} \\
\log \left(\mathrm{I}-e^{2} \sin ^{2} \phi\right)^{-3}= & +\log (\mathrm{I}+n) \\
& \quad-\mu n \cos 2 \phi \\
& +\frac{1}{2} \mu n^{2} \cos 4 \phi \\
& \quad+\frac{1}{3} \mu n^{3} \cos 6 \phi \\
& +\cdots
\end{aligned}
$$

$\mu=$ modulus of common logarithms and n is same as in section 3. For the adopted spheroid -

Radius of curvature of meridian section ρ_{m} in feet.

$$
\begin{aligned}
\log \rho_{m}= & +7.3199482 \\
& -[4.34482] \cos 2 \phi \\
& +[1.274] \cos 4 \phi \\
& -\ldots .
\end{aligned}
$$

Radius of curvature of normal section p_{n} in feet.

$$
\begin{aligned}
\log \rho_{n}= & \text { 十 } 7.32 \text { I } 4243 \\
& -[3.86770] \cos 2 \phi \\
& +[0.797] \cos 4 \phi \\
& -\ldots .
\end{aligned}
$$

The numbers in brackets in these formulas are logarithms to be added to the logarithms of $\cos 2 \phi$ and $\cos 4 \phi$. The numbers corresponding to the sums of these logarithms will be in units of the seventh decimal place of the first constant. Thus, for $\phi=0$,

7. Length of Arcs of Meridians and Parallels of Latitude.

a. Arcs of Meridian.

For the computation of short meridional arcs lying between given parallels of latitude the following simple formulas suffice :

$$
\begin{align*}
\Delta \phi & =\phi_{2}-\phi_{1}, \\
\phi & =\frac{1}{2}\left(\phi_{2}+\phi_{1}\right)_{v} \tag{I}\\
\Delta M & =\rho_{m} \Delta \phi .
\end{align*}
$$

In these, ϕ_{1} and ϕ_{2} are the latitudes of the ends of the arc, ΔM is the required length, and ρ_{m} is the meridian radius of curvature for the latitude ϕ of the middle point of the arc. The formula for ΔM implies that $\Delta \phi$ is expressed in parts of the radius. If $\Delta \phi$ is expressed in seconds, minutes, or degrees of arc, the formula becomes -

Meridional distance ΔM in feet.

$$
\begin{align*}
\Delta M & =\frac{\rho_{m} \Delta \phi \text { (in seconds) }}{206264.8} \\
& =\frac{\rho_{m} \Delta \phi \text { (in minutes) }}{3437.747}, \\
& =\frac{\rho_{m} \Delta \phi \text { (in degrees) }}{57.2957^{8}} ; \tag{2}
\end{align*}
$$

$$
\log (1 / 206264.8)=4.6855749-10,
$$

$$
\log (1 / 3437.747)=6.463726 I-10,
$$

$$
\log (1 / 57.29578)=8.2418774-10 .
$$

$\phi_{1}, \phi_{2}=$ end latitudes of arc, $\quad \Delta \phi=\phi_{2}-\phi_{1}$,

$$
\begin{aligned}
& \log \rho_{n}=7.3214243 \\
& -7373.9 \\
& +\quad 6.3 \\
& =\overline{7.3206875}=\log a \text {. }
\end{aligned}
$$

The relations (2) will answer most practical purposes when $\Delta \phi$ does not exceed 5°. A comparison with the precise formula (3) below shows in fact that the error of (2) is very nearly

$$
\frac{1}{8} e^{2} \Delta \phi^{2} \cos 2 \phi \cdot \Delta M
$$

which vanishes for $\phi=45^{\circ}$, and which for $\Delta \phi=5^{\circ}$ is at most ${ }_{\text {I }}{ }^{\frac{1}{0} 0 \delta ण} \Delta M$, or about in feet.

Numerical example. Suppose -

$$
\begin{aligned}
& \phi_{2}=37^{\circ} 29^{\prime} 48 .^{\prime \prime}{ }^{\prime} 7 \\
& \phi_{1}=35^{\circ} 48^{\prime} 29 . " 89 .
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
\phi=\frac{1}{2}\left(\phi_{2}+\phi_{1}\right) & =36^{\circ} 39^{\prime} & 09 .^{\prime \prime} 03 \\
\Delta \phi & =\phi_{2}-\phi_{1} & =\mathrm{I}^{\circ} 4 \mathbf{1}^{\prime} & 18 .^{\prime \prime 2} 2, \\
& = & 6078 .^{\prime \prime} 28 .
\end{array}
$$

From the first of (2)

$$
\begin{array}{cc}
\text { cons't. } \log & 4.6855749-\text { 1о } \\
\text { Table 1o, } \log \rho_{m} & 7.3193112 \\
\log \Delta \phi & 3.7837807 \\
\hline \Delta M=6147 \circ 5 \text { feet, } \log \Delta M & 5.7886668
\end{array}
$$

The values of ΔM for intervals of $10^{\prime \prime \prime}, 20^{\prime \prime} \ldots 60^{\prime \prime}$, and for $10^{\prime}, 20^{\prime} \ldots 60^{\prime}$ are given in Table 17 for each degree of latitude from 0° to 90°.

For precise computation of long meridional arcs the following formula is ade-quate:-

$$
\begin{align*}
\Delta M=A_{0} \Delta \phi & -A_{1} \cos 2 \phi \sin \Delta \phi \\
& +A_{2} \cos 4 \phi \sin 2 \Delta \phi \\
& -A_{3} \cos 6 \phi \sin 3 \Delta \phi \tag{3}\\
& +A_{4} \cos 8 \phi \sin 4 \Delta \phi
\end{align*}
$$

In this, $\Delta M, \phi$, and $\Delta \phi$ have the same meanings as above, and A_{0}, A_{1}, \ldots are functions of a and e or of a and n.

Thus, in terms of a and n,

$$
\begin{aligned}
& A_{0}=a(\mathrm{I}+n)^{-1}\left(\mathrm{I}+\frac{1}{4} n^{2}+\frac{1}{64} n^{4}+\ldots\right) \\
& A_{1}=3 a(\mathrm{I}+n)^{-1}\left(n-\frac{1}{8} n^{8}-\cdots\right) \\
& A_{2}=\frac{18}{8} a(\mathrm{I}+n)^{-1}\left(n^{2}-\frac{1}{4} n^{4}-\cdots\right) \\
& A_{3}=\frac{35}{24} a(\mathrm{I}+n)^{-1}\left(n^{8}-\ldots\right) \\
& A_{4}=\frac{315}{25} a(\mathrm{I}+n)^{-1}\left(n^{4}-\ldots\right)
\end{aligned}
$$

Introducing the adopted values of a and n, these constants become -
\log.

$$
\begin{array}{rrl}
A_{0}=20890606 \text { feet, } & 7.3199510 \\
A_{1}= & 1064 \text { II feet, } & 5.0269880, \\
A_{2}= & \text { II3 feet, } & 2.0528, \\
A_{3}= & 0.15 \text { feet, } 9.174-\text { го. }
\end{array}
$$

It appears, therefore, that the first three terms of (3) will give ΔM with an accuracy considerably surpassing that of the constant \boldsymbol{A}_{0}. In the use of (3) it will generally be most convenient to express $\Delta \phi$ in degrees, and in this case A_{0} must be divided by the number of degrees in the radius, viz.: 57.2957795 [r.7581226]. Applying this value and writing the logarithms of A_{0}, A_{1}, etc., in rectangular brackets in place of A_{0}, A_{1}, etc., (3) becomes

Meridional distance ΔM in feet.

$$
\begin{align*}
\Delta M & =[5.5618284] \Delta \phi \text { (in degrees) } \\
& -[5.0269880] \cos 2 \phi \sin \Delta \phi \tag{4}\\
& +[2.0528] \cos 4 \phi \sin 2 \Delta \phi \\
& -\ldots \cdots \\
2 \phi=\phi_{2}+\phi_{1}, \quad & \Delta \phi=\phi_{2}-\phi_{1}, \quad \phi_{1}, \phi_{2}=\text { end latitudes of arc. }
\end{align*}
$$

Formula (4) will suffice for the calculation of any portion or the whole of a quadrant. The length of a quadrant is the value of the first term of (4) when $\phi=45^{\circ}$ and $\Delta \phi=90^{\circ}$, since all of the remaining terms vanish.

Numerical examples. - r°. Suppose

$$
\phi_{1}=0^{\circ} \text { and } \phi_{2}=45^{\circ} .
$$

Then

$$
\begin{aligned}
2 \phi & =45^{\circ}, \\
\Delta \phi & =45^{\circ} .
\end{aligned}
$$

The third term of the series vanishes by reason of the factor $\cos 4 \phi=\cos 90^{\circ}$ $=0$. The sum of the first two terms, or length of a meridional arc from the equator to the parallel of 45°, is 16354237 feet.
2°. Suppose $\quad \phi_{1}=45^{\circ}$ and $\phi_{2}=90^{\circ}$.
Then

$$
\begin{aligned}
2 \phi & =135^{\circ}, \\
\Delta \phi & =45^{\circ} .
\end{aligned}
$$

The numerical values of the terms will be the same as in the previous example, but the sign of the second term will be plus. Hence the length of the meridional arc between the parallel of 45° and the adjacent pole is 16460649 feet. The sum of these two computed distances, or the length of a quadrant, is 32814886 feet.

This agrees as it should with the length given by (4) when $2 \phi=90^{\circ}$ and $\Delta \phi$ $=90^{\circ}$.*

b. Arcs of parallel.

The radius of any parallel of latitude is equal to the product of the radius of curvature of the normal section for the same latitude by the cosine of that latitude. That is, see Fig. r, r being the radius of the parallel -

$$
r=\rho_{n} \cos \phi
$$

and the entire length of the parallel is -

$$
2 \pi r=2 \pi \rho_{n} \cos \phi
$$

Designate the portion of a parallel lying between meridians whose longitudes are λ_{1} and λ_{2} by ΔP, and call the difference of longitude $\lambda_{2}-\lambda_{1}, \Delta \lambda$.

Then -
Arc of parallel ΔP in feet.

$$
\begin{align*}
\Delta P & =\frac{2 \pi \rho_{n} \cos \phi}{1296000} \Delta \lambda \text { (in seconds) } \\
& =\frac{2 \pi \rho_{n} \cos \phi}{21600} \Delta \lambda \text { (in minutes) } \tag{I}\\
& =\frac{2 \pi \rho_{n} \cos \phi}{360} \Delta \lambda \text { (in degrees) }
\end{align*}
$$

$\log (2 \pi / 1296000)=4.6855749-10$,
$\log (2 \pi / 21600)=6.4637261-10$,
$\log (2 \pi / 360)=8.2418774-10$.
$\lambda_{1}, \lambda_{2},=$ end longitudes of arc, $\Delta \lambda=\lambda_{2}-\lambda_{1}$,
$\rho_{n}=$ radins of curvature of normal section for latitude of parallel; for $\log \rho_{n}$ see Table in.
Numerical Example. - Suppose $\phi=35^{\circ}$, and $\Delta \lambda=72^{\circ}$. Then from the third of (9)

$$
\begin{array}{rrr}
& \text { log. } \\
\text { cons't } & 8.24187 \\
\text { Table II, } & \rho_{n} 7.321 \mathrm{I} 7 \\
& \cos \phi 9.91336 \\
\Delta \lambda & \mathrm{I} .85733 \\
\Delta P=2 \mathrm{I} 564827 \text { feet, } & \Delta P & \begin{aligned}
7.33374
\end{aligned} \\
&
\end{array}
$$

* The best formula for computing the entire length of a meridian curve is this:

$$
\pi(a+b)\left(1+\frac{1}{2} n^{2}+\frac{d}{d} n^{4}+\ldots\right),
$$

in which a, b, and n are the same as defined in section z. For the values here adopted -

	log.
$\left(\mathrm{I}+\frac{1}{2} n^{2}+\ldots\right)$	0.000003
$(a+b)$	7.6209807
π	0.4971499
length	$\mathbf{8 . 1 1 8 1 3 0 9}$

The length of the perimeter of the generating ellipse, or the meridian circumference of the earth, is, therefore -

$$
131259550 \text { feet }=24859.76 \text { miles. }
$$

The values of ΔP for intervals of $10^{\prime \prime}, 20^{\prime \prime} \ldots 60^{\prime \prime}$, and for $10^{\prime}, 20^{\prime} \ldots 60^{\prime}$ are given in Table 18 for each degree of latitude from 0° to 90°.

8. Radius-Vector of Earth's Spheroid.

$$
\begin{aligned}
& \rho=\text { radius-vector } \\
& =\sqrt{x^{2}+y^{2}} \\
& =a\left(\mathrm{r}-2 e^{2} \sin ^{2} \phi+e^{4} \sin ^{2} \phi\right)^{4}\left(\mathrm{r}-e^{2} \sin ^{2} \phi\right)^{-4} . \\
& \log \rho=\log \frac{a\left(2-e^{2}\right)}{1+\sqrt{1-e^{2}}}+\mu(m-n) \cos 2 \phi \\
& -\frac{1}{2} \mu\left(m^{2}-n^{2}\right) \cos 4 \phi \\
& +\frac{1}{3} \mu\left(m^{8}-n^{2}\right) \cos 6 \phi
\end{aligned}
$$

For the adopted spheroid

$$
\begin{aligned}
\log (\rho \text { in feet })=7.3199520 & +[3.86769] \cos 2 \phi \\
& -[1.2737] \cos 4 \phi,
\end{aligned}
$$

the logarithms for the terms in ϕ corresponding to units of the seventh decimal place. Thus, for $\phi=0$,

$$
\begin{aligned}
\log \rho= & 7.3199520 \\
& +\quad 7373.8 \\
& = \\
= & 18.8206875=\log a .
\end{aligned}
$$

9. Areas of Zones and Quadrilaterals of the Earth's Surface.

An expression for the area of a zone of the earth's surface or of a quadrilateral bounded by meridians and parallels may be found in the following manner :-

The area of an elementary zone $d Z$, whose middle latitude is ϕ and whose width is $\rho_{m} d \phi$, is (see Fig. I),

$$
\begin{aligned}
d Z & =2 \pi r \rho_{m} d \phi \\
& =2 \pi \rho_{m} \rho_{n} \cos \phi d \phi
\end{aligned}
$$

By means of the relations in section 6 this becomes

$$
\begin{align*}
d Z & =2 \pi a^{2}\left(\mathrm{I}-e^{2}\right) \frac{\cos \phi d \phi}{\left(1-e^{2} \sin ^{2} \phi\right)^{2}} \\
& =2 \pi a^{2} \frac{1-e^{2}}{e} \frac{d(e \sin \phi)}{\left(1-e^{2} \sin ^{2} \phi\right)^{2}} \tag{I}
\end{align*}
$$

The integral of this between limits corresponding to ϕ_{1} and ϕ_{2}, or the area of a zone bounded by parallels whose latitudes are ϕ_{1} and ϕ_{2} respectively, is

$$
Z=\pi a^{2} \frac{\mathrm{I}-e^{2}}{e}\left\{\begin{array}{c}
\frac{e \sin \phi_{2}}{\mathrm{I}-e^{2} \sin ^{2} \phi_{2}}-\frac{e \sin \phi_{1}}{\mathrm{I}-e^{2} \sin ^{2} \phi_{1}} \tag{2}\\
+\frac{1}{2} \text { Nap. } \log \frac{\left(\mathrm{I}+e \sin \phi_{2}\right)\left(\mathrm{I}-e \sin \phi_{1}\right)}{\left(\mathrm{I}-e \sin \phi_{2}\right)\left(\mathrm{I}+e \sin \phi_{1}\right)}
\end{array}\right\} .
$$

To get the area of the entire surface of the spheroid, make $\phi_{1}=-\frac{1}{2} \pi$ and ϕ_{9} $=十 \frac{1}{2} \pi$ in (2). The result is

$$
\begin{equation*}
\text { Surface of spheroid }=2 \pi a^{2}\left[\mathrm{I}+\frac{\mathrm{I}-e^{2}}{2 e} \text { Nap. } \log \left(\frac{\mathrm{I}+e}{\mathrm{I}-e}\right)\right] . \tag{3}
\end{equation*}
$$

For numerical applications it is most advantageous to express (3) in a series of powers of e. Thus, by Maclaurin's theorem,

$$
\begin{equation*}
\text { Surface of spheroid }=4 \pi a^{2}\left(1-\frac{e^{2}}{3}-\frac{e^{4}}{15}-\frac{e^{8}}{35}-\ldots\right) . \tag{4}
\end{equation*}
$$

For the calculation of areas of zones and quadrilaterals it is also most advantageous to expand (2) in a series of powers of $e \sin \phi_{1}$ and $e \sin \phi_{2}$ and express the result in terms of multiples of the half sum and half difference of ϕ_{1} and ϕ_{2}. Thus, (2) readily assumes the form

$$
Z=2 \pi a^{2}\left(\mathrm{I}-e^{2}\right)\left[\left(\sin \phi_{2}-\sin \phi_{1}\right)+\frac{2}{3} e^{2}\left(\sin ^{8} \phi_{2}-\sin ^{8} \phi_{1}\right)+\ldots\right] .
$$

From this, by substitution and reduction, there results

$$
Z=2 \pi\left\{\begin{array}{c}
C_{1} \cos \phi \sin \frac{1}{2} \Delta \phi-C_{2} \cos 3 \phi \sin \frac{3}{2} \Delta \phi \tag{5}\\
+C_{3} \cos 5 \phi \sin \frac{\beta}{2} \Delta \phi-.
\end{array}\right\},
$$

wherein

$$
\begin{gather*}
\phi=\frac{1}{2}\left(\phi_{2}+\phi_{1}\right), \\
\phi_{2}-\phi_{1}, \\
C_{1}=2 a^{2}\left(\mathrm{I}-\frac{e^{2}}{2}-\frac{e^{4}}{8}-\frac{e^{6}}{16}-\ldots\right), \\
C_{2}=2 a^{2}\left(\frac{e^{2}}{6}+\frac{e^{4}}{48}+\circ+\ldots\right), \tag{6}\\
C_{3}=2 a^{2}\left(\frac{3 e^{4}}{80}+\frac{e^{6}}{40}+\ldots\right) .
\end{gather*}
$$

If Q be the area of a quadrilateral bounded by the parallels whose latitudes are ϕ_{1} and ϕ_{2} and by meridians whose difference of longitude is $\Delta \lambda$,

$$
Q=\frac{\Delta \lambda}{2 \pi} Z .
$$

Hence, using the English mile as unit of length, (5) and (6) give for the adopted spheroid -

Area of quadrilateral in square miles.

$$
\begin{gathered}
Q=\Delta \lambda \text { (in degrees) }\left\{\begin{array}{l}
c_{1} \cos \phi \sin \frac{1}{2} \Delta \phi-\epsilon_{2} \cos 3 \phi \sin \frac{3}{2} \Delta \phi \\
+\epsilon_{3} \cos 5 \phi \sin \frac{5}{2} \Delta \phi-\ldots
\end{array}\right\}, \\
\log c_{1}^{*}=5.7375398, \\
\log c_{2}=2.79173, \\
\log \epsilon_{3}=9.976-10 .
\end{gathered}
$$

[^4]Numerical examples. - 1°. Suppose $\phi_{1}=0, \phi_{2}=90^{\circ}$ and $\Delta \lambda=360^{\circ}$. Then (7) should give the area of a hemispheroid. The calculation runs thus :

log.	log.	log.
$c_{1} 5.7375398$	$\mathrm{c}_{2} 2.79173$	$c_{3} 9.976-10$
$\cos \phi 9.8494850$ - 10	$\cos 3 \boldsymbol{\phi} 9.84948_{n}$ - 10	$\cos 5$ ¢ 9.849n - ro
$\sin \frac{1}{2} \Delta \phi 9.8494850-10$	$\sin \frac{3}{2} \Delta \phi 9.84949$ - 10	$\sin \frac{5}{2} \Delta \phi 9.848_{n}-10$
3602.5563025	3602.55630	3602.556
Sum 7.9928123	5.04700_{n}	2.229

Hence -

$$
Q \begin{aligned}
& \begin{array}{l}
\text { rst term } \\
\text { 2d term } \\
3^{\text {d }} \text { term }
\end{array}=+\begin{array}{r}
9835^{8} 59 \mathrm{r} \\
\text { III429 } \\
169
\end{array} \\
& Q=\quad \text { sum }=\begin{array}{l}
98470189
\end{array}
\end{aligned}
$$

Twice this is the area of the spheroidal surface of the earth; i.e., 19694037^{8} square miles.
2°. The last result may be checked by (4). Thus,

$$
\begin{aligned}
&\left(\frac{e^{2}}{3}+\frac{e^{4}}{15}+\ldots\right)=0.00225928 \\
& \log \left(1-\frac{e^{2}}{3}-\ldots\right)=9.9990177 \\
&=7.1961072 \\
& \log a^{2}=\underline{1.0992099} \\
& \log 4 \pi \\
& \log (196940407) \\
& \hline 8.2943348
\end{aligned}
$$

This number agrees with the number derived above as closely as 7 -place logarithms will permit, the discrepancy between the two values being about
 precision of the elements of the adopted spheroid warrants,

Area earth's surface $=196940400$ square miles.
The areas of quadrilaterals of the earth's surface bounded by meridians and parallels of $\mathrm{I}^{\circ}, 30^{\prime}, 15^{\prime}$, and 10^{\prime} extent respectively, in latitude and longitude, are given in Tables 25 to 29 .
10. Spheres of Equal Volume and Equal Surface with Earth's Spheroid.
$r_{1}=$ radius of sphere having same volume as the earth's spheroid,
$r_{2}=$ radius of sphere having same surface as that spheroid.

$$
\begin{aligned}
r_{1} & =\sqrt[3]{a^{2} b} \\
& =a\left(\mathrm{I}-\frac{1}{6} e^{2}-\frac{A^{2}}{7^{4}} e^{4}-\mathrm{T}_{2}^{286} e^{6}-\ldots\right) .
\end{aligned}
$$

$$
\begin{aligned}
r_{2} & =a\left(\mathrm{I}-\frac{e^{2}}{3}-\frac{e^{4}}{15}-\frac{e^{6}}{35}-\ldots\right)^{\frac{1}{2}} \\
& =a\left(\mathrm{I}-\frac{1}{8} e^{2}-\frac{117}{360} e^{4}-{ }_{3}^{67} \frac{7}{24} e^{6}-\ldots\right), \\
a-r_{1} & =\frac{1}{8} a e^{2}\left(\mathrm{I}+\frac{5}{12} e^{2}+\ldots\right)=0.00113 a, \text { about. } \\
r_{2}-r_{1} & =\frac{1}{45} a e^{4}+\ldots=0.000001 a, \text { about. }
\end{aligned}
$$

i1. Co-ordinates for the Polyconic Projection of Maps.

In the polyconic system of map projection every parallel of latitude appears on the map as the developed circumference of the base of a right cone tangent to the spheroid along that parallel. Thus the parallel $E F$ (Fig. 2) will appear in projection as the arc of a circle $E O F$ (Fig. 3) whose radius $O G=l$ is equal to the slant height of the tangent cone $E F G$ (Fig. 2). Evidently one meridian and only one will appear as a straight line. This meridian is generally made the central meridian of the area to be projected. The distances along this central meridian between consecutive parallels are made equal (on the scale of the map) to the real distances along the surface of the spheroid. The circles in which the parallels are developed are not concentric, but their centres all lie on the central meridian. The meridians are concave
 toward the central meridian, and, except near the corners of maps showing large
 central meridian, and let the rectangular axes of $Y(O G)$ and $X(O Q)$ be re-
spectively coincident with and perpendicular to this meridian. Call the interval
in longitude between the central meridian and the next adjacent one $\Delta \lambda$, and central meridian, and let the rectangular axes of $Y(O G)$ and $X(O Q)$ be re-
spectively coincident with and perpendicular to this meridian. Call the interval
in longitude between the central meridian and the next adjacent one $\Delta \lambda$, and central meridian, and let the rectangular axes of $Y(O G)$ and $X(O Q)$ be re-
spectively coincident with and perpendicular to this meridian. Call the interval
in longitude between the central meridian and the next adjacent one $\Delta \lambda$, and denote the angle at the centre G subtended by the developed arc $O P$ by α. lels at angles differing little from right angles.

In the practical work of map making, the meridians and parallels are most advantageously defined by the co-ordinates of their points of intersection. These coordinates may be expressed in the following manner: For any parallel, as EOF (Fig. 3), take the origin O at the intersection with the

Then from Fig. 3 it appears that

$$
\begin{aligned}
& x=l \sin \alpha \\
& y=2 l \sin ^{2} \frac{1}{2} \alpha
\end{aligned}
$$

But from Figs. 2 and 3,

$$
\begin{gathered}
l=\rho_{n} \cot \phi \\
l a=r \Delta \lambda=\rho_{n} \Delta \lambda \cos \phi
\end{gathered}
$$

whence

$$
a=\Delta \lambda \sin \phi
$$

Hence, in terms of known quantities there result

$$
\begin{gather*}
x=\rho_{n} \cot \phi \sin (\Delta \lambda \sin \phi) \tag{I}\\
y=2 \rho_{n} \cot \phi \sin ^{2} \frac{1}{2}(\Delta \lambda \sin \phi) .
\end{gather*}
$$

Numerical example. - Suppose $\phi=40^{\circ}$ and $\Delta \lambda=25^{\circ}=90000^{\prime \prime}$.
Then

$$
\begin{array}{ll}
\log 90000^{\prime \prime} & =4.9542425 \\
\log \sin 40^{\circ} & =9.8080675-10 \\
\log 57850 . .^{\prime \prime} 88 & =4.7623100 ; \\
\Delta \lambda \sin \phi & =16^{\circ} 04^{\prime} 10 .^{\prime \prime} 88 \\
\frac{1}{2}(\Delta \lambda \sin \phi) & =8^{\circ} 02^{\prime} \circ 5^{\prime \prime} 44 .
\end{array}
$$

\log.

$\sin (\Delta \lambda \sin \phi)$	$9.4421760-10$
$\cot \phi$	0.0761865
$\rho_{n j}$ Table II	7.3212956

x
6.8396581
$x=6912865$ feet
log.
$\sin \frac{1}{2}(\Delta \lambda \sin \phi) 9.1454305-10$
$\sin \frac{1}{2}(\Delta \lambda \sin \phi) 9.1454305-10$ $\cot \phi \quad 0.0761865$
ρ_{n}, Table II $\quad 7.32$ I 2956
20.3010300
$y \quad 5.9893731$
$y=975828$ feet.

The equations (I) are exact expressions for the co-ordinates. But when $\Delta \lambda$ is small, one may use the first terms in the expansions of $\sin (\Delta \lambda \sin \phi)$ and $\sin ^{2} \frac{1}{2}(\Delta \lambda \sin \phi)$ and reach results of a much simpler form.

Thus,

$$
\begin{aligned}
& \sin (\Delta \lambda \sin \phi)=\Delta \lambda \sin \phi-\frac{1}{6}(\Delta \lambda \sin \phi)^{8}+\ldots, \\
& \sin ^{2} \frac{1}{2}(\Delta \phi \sin \phi)=\frac{1}{4}(\Delta \lambda \sin \phi)^{2}-\frac{1}{48}(\Delta \lambda \sin \phi)^{4}+\ldots ;
\end{aligned}
$$

whence, to terms of the second order,

$$
\begin{align*}
& x=\rho_{n} \Delta \lambda \cos \phi\left[1-\frac{1}{6}(\Delta \lambda \sin \phi)^{2}\right], \tag{2}\\
& y=\frac{1}{4} \rho_{n}(\Delta \lambda)^{2} \sin 2 \phi\left[1-\frac{1}{12}(\Delta \lambda \sin \phi)^{2}\right]
\end{align*}
$$

If the terms of the second order in these equations be neglected, the value of x will be too great by an amount somewhat less than $\frac{1}{6}(\Delta \lambda \sin \phi)^{2} \cdot x$, and the value of y will be too great by an amount somewhat less than $\frac{1}{2}(\Delta \lambda \sin \phi)^{2} . y$. An idea of the magnitudes of these fractions of x and y may be gained from the following table, which gives the values of $\frac{1}{6}(\Delta \lambda \sin \phi)^{2}$ for a few values of the arguments $\Delta \lambda$ and ϕ.

Values of $\frac{1}{6}(\Delta \lambda \sin \phi)^{2}$.

$\Delta \lambda$	ϕ		
	20°	40°	60°
-			
1	r/168000	1/47700	1/26260
2	1/42000	1/11900	1/6560
3	1/18700	1/5300	1/2920

It appears from this table that the first terms of (2) will suffice in computing the co-ordinates for projection of all maps on ordinary scales, and of less extent in longitude than 2° from the middle meridian. For example, the value of x for $\Delta \lambda=2^{\circ}$, and $\phi=40^{\circ}$, and for a scale of two miles to one inch ($\mathrm{I} / \mathrm{I} 26{ }^{2} 20$), is 53.063 inches less $\mathrm{r} / \mathrm{m} 1900$ part, or about 0.004 inch, which may properly be regarded as a vanishing quantity in map construction. For the computation of the co-ordinates given in the tables 19 to 24 , where $\Delta \lambda$ does not exceed r°, it is amply sufficient, therefore, to use

$$
\begin{align*}
& x=\rho_{n} \Delta \lambda \cos \phi, \\
& y=\frac{1}{4} \rho_{n}(\Delta \lambda)^{2} \sin 2 \phi . \tag{3}
\end{align*}
$$

In these formulas and in (2), if $\Delta \lambda$ is expressed in seconds, minutes, or degrees, it must be divided by the number of seconds, minutes, or degrees in the radius. The logarithms of the reciprocals of these numbers are given on p . xlvi. In the construction of tables like 19 to 24 , it is most convenient, when English units are used, to express $\Delta \lambda$ in minutes and x and y in inches. For this purpose, supposing $\log \rho_{n}$ to be taken from Table ir, if s be the scale of the map, or scale factor, equations (3) become -

Co-ordinates x and y in inches for scale s.

$$
\begin{align*}
& x=\frac{12}{3437.747} \rho_{n} s \Delta \lambda \cos \phi \\
& y=\frac{3}{(3437.747)^{2}} \rho_{n} s(\Delta \lambda)^{2} \sin 2 \phi \tag{4}
\end{align*}
$$

$\Delta \lambda$ in minutes ;

$$
\begin{aligned}
& \log (12 / 3437.747)=7.5429 \mathrm{r}-10, \\
& \log \left(3 /(3437.747)^{2}\right)=3.4046-10 .
\end{aligned}
$$

Tables 19 to 24 give the values of x and y for various scales and for the zone of the earth's surface lying between 0° and 80°.

Numerical example. - Suppose $\phi=40^{\circ}$ and $\Delta \lambda={ }^{1} 5^{\prime}$; and let the scale of the map be one mile to the inch, or $s=1 / 63360$. Then the calculation by (4) runs thus:

These values of x and y, it will be observed, agree with those corresponding to the same arguments in Table 22.

When many values for the same scale are to be computed, $\log s$ should, of course, be combined with the constant logarithms of (4). Moreover, since in (4) x varies as $\Delta \lambda$ and y as $(\Delta \lambda)^{2}$, when several pairs of co-ordinates are to be computed for the same latitude, it will be most advantageous to compute the pair corresponding to the greatest common divisor of the several values of $\Delta \lambda$ and derive the other pairs by direct multiplication.

12. Lines on a Spheroid.

The most important lines on a spheroid used in geodesy are (a) the curve of a vertical section; (b) the geodesic line; and (c) the alignment curve. Imagine two points in the surface of a spheroid, and denote them by P_{1} and P_{2} respectively. The vertical plane at P_{1} containing P_{2} and the vertical plane at P_{2} containing P_{1} give vertical section curves or lines. The curves cut out by these two planes coincide only when P_{1} and P_{2} are in a meridian plane. The geodesic line is the shortest line joining P_{1} and P_{2}, and lying in the surface of the spheroid. The alignment curve on a spheroid is a curve whose vertical tangent plane at every point of its length contains the terminal points P_{1} and P_{2}. The curve (a) lies wholly in one plane, while (b) and (c) are curves of double curvature. In the case of a triangle formed by joining three points on a spheroid by lines lying in its surface, the curves of class (a) give two distinct sets of triangle sides, while the curves of classes (b) and (c) give but one set of sides each. For all intervisible points on the surface of the earth, these different lines differ immaterially in length; the only appreciable differences they present are in their azimuths (see formula under b below). Of the three classes of curves the first two only are of special importance.

a. Characteristic property of curves of vertical section.

Let $\quad a_{1,2}=$ azimuth of vertical section at P_{1} through P_{2},
$\alpha_{2.1}=$ azimuth of vertical section at P_{2} through P_{1},
$\theta_{1}, \theta_{2}=$ reduced latitudes of P_{1} and P_{2} respectively,
$\delta_{1}, \delta_{2}=$ angles of depression at P_{1} and P_{2} respectively of the chord joining these points.

Then the characteristic property of the vertical section curve joining P_{1} and P_{2} is

$$
\sin a_{1,2} \cos \theta_{1} \cos \delta_{1}=\sin \left(\alpha_{2,1}-180^{\circ}\right) \cos \theta_{2} \cos \delta_{2}
$$

The azimuths $a_{1.2}$ and $a_{2.1}$, it will be observed, are the astronomical azimuths or the azimuths which would be determined astronomically by means of an altitude and azimuth instrument.

b. Characteristic property of geodesic line.

Let

$$
\begin{aligned}
a_{1.2}^{\prime} & =\text { azimuth of geodesic line at } P_{1}, \\
a_{2,1}^{\prime} & =\text { azimuth of geodesic line at } P_{2,}, \\
\theta_{1}, \theta_{2} & =\text { reduced latitudes of } P_{1} \text { and } P_{2} \text { respectively. }
\end{aligned}
$$

Then the characteristic property of the geodesic line is

$$
\sin a_{1.2} \cos \theta_{1}=\sin \left(180^{\circ}-a_{2.1}\right) \cos \theta_{2}=\cos \theta_{0}
$$

where θ_{0} is the reduced latitude of the point where the geodesic through P_{1} and P_{2} is at right angles to a meridian plane.
The difference between the astronomical azimuth $a_{1.2}$ and the geodesic azimuth $a_{1,2}^{\prime}$ is expressed by the following formula:

$$
a_{1.2}-a_{1.2}^{\prime} \text { (in seconds) }=\frac{1}{12} \rho^{\prime \prime} e^{2}\left(\frac{s}{a}\right)^{2} \cos ^{2} \phi \sin 2 a_{1.2}
$$

where

$$
\begin{aligned}
& s=\text { length of geodesic line } P_{1} P_{2}, \\
& a=\text { major semi-axis of spheroid, } \\
& e=\text { eccentricity of spheroid, } \\
& \rho^{\prime \prime}=206264 .^{\prime \prime} 8, \\
& \phi=\text { astronomical latitude of } P_{1}, \\
& a_{1.2}=\text { azimuth (astronomical or geodesic) of } P_{1} P_{2,}, \\
& \log \frac{1}{12} \rho^{\prime \prime}\left(\frac{e}{a}\right)^{2}=7.4244-20, \text { for } a \text { in feet. }
\end{aligned}
$$

Thus, for $\phi=0$ and $a_{1.2}=45^{\circ}$, for which $\cos ^{2} \phi \sin 2 a_{1.2}=1$, the above formula gives

$$
\begin{aligned}
a_{1.2}-a_{1.2}^{\prime} & =0 . " \circ 74, \text { for } s=100 \text { miles } \\
& =0.296, \text { for } s=200 \text { miles } \\
& =\ldots ;
\end{aligned}
$$

so that for most geodetic work this difference is of little if any importance.

13. Solution of Spheroidal Triangles.

The data for solution of a spheroidal triangle ordinarily presented are the measured angles and the length of one side. This latter may be either a geodesic line or a vertical section curve, since their lengths are in general sensibly equal. Such triangles are most conveniently solved in accordance with the rule afforded by Legendre's theorem, which asserts that the sides of a spheroidal triangle (of any measurable size on the earth) are sensibly equal to the sides of a plane triangle having a base of the same length and angles equal respectively to the spheroidal angles diminished each by one third of the excess of the spheroidal triangle. In other words, the computation of spheroidal triangles is thus made to depend on the computation of plane triangles.

a. Spherical or spheroidal excess.

The excess of a spheroidal triangle of ordinary extent on the earth is given by

$$
\epsilon(\text { in seconds })=\rho^{\prime \prime} \frac{S}{\rho_{m} \rho_{n}}
$$

where S is the area of the spheroidal or corresponding plane triangle; ρ_{m}, ρ_{n} are the principal radii of curvature for the mean latitude of the vertices of the triangle; and $\rho^{\prime \prime}=206264 .{ }^{\prime \prime} 8$. For a sphere, $\rho_{m}=\rho_{n}=$ radius of the sphere.

Denote the angles of the spheroidal triangle by A, B, C, respectively; the corresponding angles of the plane triangle by a, β, γ (as on p. xviii) ; and the sides common to the two triangles by a, b, c. Then

$$
\begin{gathered}
S=\frac{1}{2} a b \sin \gamma=\frac{1}{2} b c \sin \alpha=\frac{1}{2} c a \sin \beta \\
a=A-\frac{1}{3} \epsilon, \quad \beta=B-\frac{1}{3} \epsilon, \quad \gamma=C-\frac{1}{3} \epsilon
\end{gathered}
$$

Tables 13 and 14 give the values of $\log \left(\rho^{\prime \prime} / 2 \rho_{m} \rho_{n}\right)$ for intervals of 1° of astronomical or geographical latitude.*

14. Geodetic Differences of Latitude, Longitude, and Azimuth.

a. Primary triangulation.

Denote two points on the surface of the earth's spheroid by P_{1} and P_{2} respectively. Let

$$
\begin{aligned}
s & =\text { length of geodesic line joining } P_{1} \text { and } P_{2}, \\
\phi_{1}, \phi_{2} & =\text { astronomical latitudes of } P_{1} \text { and } P_{2}, \\
\lambda_{1}, \lambda_{2} & =\text { longitudes of } P_{1} \text { and } P_{2}, \\
\Delta \lambda & =\lambda_{2}-\lambda_{1}, \\
a_{1.2} & =\text { azimuth of } P_{1} P_{2}(s) \text { at } P_{1}, \\
a_{2.1} & =\text { azimuth of } P_{2} P_{1}(s) \text { at } P_{2}, \\
e & =\text { eccentricity of spheroid, } \\
\rho_{m,} \rho_{n} & =\text { principal (meridian and normal) radii of curvature at the point } P_{1} .
\end{aligned}
$$

Then for the longest sides of measurable triangles on the earth the following formulas will give ϕ_{2}, λ_{2}, and $\alpha_{2.1}$ in terms of $\phi_{1}, \lambda_{1}, a_{1.2}$ and s. The azimuths are astronomical, and are reckoned from the south by way of the west through 360°.

$$
\begin{gather*}
a^{\prime}=180^{\circ}-\alpha_{1.2,}, \quad \text { and } \alpha_{2.1}=180^{\circ}+\alpha^{\prime \prime}, \quad \text { for } a_{1,2}<180^{\circ} \\
\alpha^{\prime}=\alpha_{1.2}-180^{\circ}, \quad \text { and } \alpha_{2.1}=180^{\circ}-\alpha^{\prime \prime}, \quad \text { for } \alpha_{1,2}>180^{\circ} \tag{I}\\
\eta=\frac{s}{\rho_{n}}\left\{1+\frac{1}{8} \frac{e^{2}}{1-e^{2}}\left(\frac{s}{\rho_{n}}\right)^{2} \cos ^{2} \phi_{1} \cos ^{2} \alpha^{\prime}\right\} \tag{2}\\
\zeta=\frac{1}{4} \frac{e^{2} \eta^{2}}{1-e^{2}} \cos ^{2} \phi_{1} \sin 2 \alpha^{\prime} \tag{3}
\end{gather*}
$$

[^5]\[

$$
\begin{gather*}
\tan \frac{1}{2}\left(a^{\prime \prime}+\Delta \lambda+\zeta\right)=\frac{\cos \frac{1}{2}\left(90^{\circ}-\phi_{1}-\eta\right)}{\cos \frac{1}{2}\left(90^{\circ}-\phi_{1}+\eta\right)} \cot \frac{1}{2} a^{\prime} \tag{4}\\
\tan \frac{1}{2}\left(a^{\prime \prime}-\Delta \lambda+\zeta\right)=\frac{\sin \frac{1}{2}\left(90^{\circ}-\phi_{1}-\eta\right)}{\sin \frac{1}{2}\left(90^{\circ}-\phi_{1}+\eta\right)} \cot \frac{1}{2} a^{\prime} \\
\phi_{2}-\phi_{1}=\frac{s}{\rho_{m}} \frac{\sin \frac{1}{2}\left(a^{\prime \prime}-a^{\prime}+\zeta\right)}{\sin \frac{1}{2}\left(a^{\prime \prime}+a^{\prime}+\zeta\right)}\left\{1+\frac{1}{12} \eta^{2} \cos ^{2} \frac{1}{2}\left(a^{\prime \prime}-a^{\prime}\right)\right\} . \tag{5}
\end{gather*}
$$
\]

To express η, ζ, and $\phi_{2}-\phi_{1}$ in seconds of arc we must multiply the right hand sides of (2), (3), and (5) by $\rho^{\prime \prime}=206264 .^{\prime \prime} 8$. For logarithmic compution of $\eta^{\prime \prime}$ and $\zeta^{\prime \prime}$, or η and ζ in seconds, we may write with an accuracy generally sufficient

$$
\begin{align*}
& \log \eta^{\prime \prime}=\log \left(\rho^{\prime \prime} s / \rho_{n}\right)+\frac{1}{6} \frac{\mu e^{2}}{1-e^{2}}\left(\frac{s}{\rho_{n}}\right)^{2} \cos ^{2} \phi_{1} \cos ^{2} \alpha^{\prime} \tag{6}\\
& \log \zeta^{\prime \prime}=\log \frac{1}{4} \frac{e^{2}}{\left(\mathrm{I}-e^{2}\right) \rho^{\prime \prime}}+\log \left\{\left(\eta^{\prime \prime}\right)^{2} \cos ^{2} \phi_{1} \sin 2 a^{\prime}\right\} \tag{7}
\end{align*}
$$

where μ in (6) is the modulus of common logarithms. For units of the 7 th decimal place of $\log \eta^{\prime \prime}$ we have for the adopted spheroid

$$
\log \frac{1}{6} \frac{\mu e^{2}}{1-e^{2}}=3.69309
$$

Also

$$
\log \frac{1}{4} \frac{e^{2}}{\left(1-e^{2}\right) \rho^{\prime}}=1.91697-10
$$

Similarly, for the computation of the logarithm of the last factor in (5) we have

$$
\log \left\{1+\frac{1}{12} \eta^{2} \cos ^{2} \frac{1}{2}\left(a^{\prime \prime}-a^{\prime}\right)\right\}=\log \left\{1+\frac{1}{12\left(\rho^{\prime \prime}\right)^{2}}\left(\eta^{\prime \prime}\right)^{2} \cos ^{2} \frac{1}{2}\left(a^{\prime \prime}-a^{\prime}\right)\right\}
$$

Putting for brevity

$$
q=\frac{\mathrm{r}}{\mathrm{I2}\left(\rho^{\prime \prime}\right)^{2}}\left(\eta^{\prime \prime}\right)^{2} \cos ^{2} \frac{1}{2}\left(a^{\prime \prime}-a^{\prime}\right)
$$

the logarithm of the desired logarithm is given to terms of the second order inclusive in q by

$$
\log \log (1+q)=\log \mu q-\frac{1}{2} \mu q
$$

For the adopted spheroid

$$
\log \frac{\mu}{12\left(\rho^{\prime \prime}\right)^{2}}=4.92975-10
$$

for units of the seventh decimal place.
For a line 200 miles (about 320 kilometres) long, the maximum value of the second term in (6) is but 12.6 units in the 7 th place of $\log \eta^{\prime \prime}$. For the same length of line, the maximum value of $\zeta_{\ell}^{\prime \prime}$ is $0 .{ }^{\prime \prime} 895$, and the maximum value of the $\operatorname{logarithm}$ of the last factor in (5), or $\log (1+q)$, is less than 922 units in the seventh place of decimals.

For computing differences of latitude, longitude, and azimuth in primary triangulation whose sides are 1° (about 70 miles, or 100 kilometres) or less in length, the most convenient means are formulas giving $\phi_{2}-\phi_{1}, \lambda_{2}-\lambda_{1}$, and
$a_{2.1}-\left(180^{\circ}-a_{1.2}\right)$, in series proceeding according to powers of the distance s. Formulas of this kind with convenient tables for facilitating the computations are given in the Reports of the U. S. Coast and Geodetic Survey.*

b. Secondary triangulation.

For secondary triangulation, wherein the sides are 12 miles (20 kilometres) or less in length, and wherein differences of latitude and longitude are needed to the nearest hundredth of a second only, the following formulas may suffice. Using the same notation as in the preceding section, the formulas are : -

$$
\begin{gather*}
\phi_{2}=\phi_{1}+\Delta \phi, \\
\lambda_{2}=\lambda_{1}+\Delta \lambda, \tag{I}\\
a_{2.1}=180^{\circ}+a_{1.2}+\Delta a \\
\Delta \phi=-\quad a_{1} s \cos a_{1.2}-a_{2} s^{2} \sin ^{2} a_{1.2} \\
\Delta \lambda=+b_{1} \sec \phi_{1} s \sin a_{1.2}-b_{2} s^{2} \sin a_{1.2} \cos a_{1.2} \tag{2}\\
\Delta a=-c_{1} \tan \phi_{1} s \sin a_{1.2}+c_{2} s^{2} \sin a_{1.2} \cos a_{1.2}
\end{gather*}
$$

The constants entering the latter equations are defined by the following expressions, wherein ρ_{m} and ρ_{n} are the principal radii of curvature of the spheroid at the point whose latitude is ϕ_{1} and $\rho^{\prime \prime}=206264 .{ }^{\prime \prime} 8$:

$$
\begin{gathered}
a_{1}=\frac{\rho^{\prime \prime}}{\rho_{m}}, \quad b_{1}=c_{1}=\frac{\rho^{\prime \prime}}{\rho_{n}} \\
a_{2}=\frac{\rho^{\prime \prime} \tan \phi_{1}}{2 \rho_{m} \rho_{n}}, \quad b_{2}=\frac{\rho^{\prime \prime} \sec \phi_{1} \tan \phi_{1}}{\rho_{n}{ }^{2}}, \quad c_{2}=\frac{\rho^{\prime \prime}\left(\mathrm{I}+2 \tan ^{2} \phi_{1}\right)}{2 \rho_{n}{ }^{2}} .
\end{gathered}
$$

The logarithms of the factors $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$, are given in Table 15 for the English foot as unit, and in Table 16 for the metre as unit, the argument being the initial latitude ϕ_{1} for all of them.

When all of the differences given by (2) are computed, they may be checked by the formula

$$
\begin{equation*}
\sin \frac{1}{2}\left(\phi_{2}+\phi_{1}\right)=\frac{\Delta a}{\Delta \dot{\lambda}} \tag{3}
\end{equation*}
$$

For convenience of reference in numerical applications of the above formulas, (2) may be written thus:

$$
\begin{aligned}
& \Delta \phi=A_{1}+A_{2} \\
& \Delta \lambda=B_{1}+B_{2} \\
& \Delta a=C_{1}+C_{2}
\end{aligned}
$$

in which, for example, A_{1} and A_{2} are the first and second terms respectively of $\Delta \phi$, due regard being paid to the signs of the functions of $a_{1.2}$.

Numerical example. The following example will serve to illustrate the use of formulas (1) to (3). The value of $\log s$ is for s in English feet, s being in this case about 12.3 miles.

$$
\begin{aligned}
& \Delta \phi \quad \text {-07' } 50.121 \quad \Delta \lambda \quad+09^{\prime} 20 .{ }^{\prime \prime} 22 \quad \Delta a \quad \text {-05 } 51 .^{\prime \prime} 32 \\
& \phi_{2} \quad 38^{\circ} 46^{\prime} 18 .^{\prime \prime \prime} 17 \quad \lambda_{2} \quad 88^{\circ} 12^{\prime} 44^{\prime \prime} 37 \quad a_{2.1} 222^{\circ} 55^{\prime} 54 .^{\prime \prime} 97 \\
& \frac{1}{2}\left(\phi_{2}+\phi_{1}\right) \quad 3^{8^{\circ}} 5^{\prime}{ }^{\prime} 13 . .^{\prime \prime} 27
\end{aligned}
$$

* See Appendix 7, Report of 1884 , for latest edition of these tables.

\log	\log	\log	\log
s 4.81308	s 4.81308	$s \sin a_{1.2} 4.647$	$s \sin a_{1.2} 4.647$
$\cos a_{1.2} 9.86392$	$\sin a_{1.2} 9.83402$	$s \sin a_{1.2} 4.647$	$s \cos a_{1.2} 4.677$
$a_{1} 7.99495$	$\sec \phi_{1} 0.10890$	$a_{2} 0.279$	$b_{2} 0.688$
	$b_{1} 7.99316$		$c_{2} 0.733$
$A_{1} 2.67195$	$B_{1} 2.74916$	$A_{2} 9.573$	$B_{2} 0.012$
	$\sin \phi_{1} 9.79795$		$C_{2} 0.057$
	$C_{1} 2.547 \mathrm{II}$		
$A_{1}-469 .{ }^{\prime \prime} 84$	$B_{1}+56 \mathrm{r} .{ }^{\prime \prime} 25$	$C_{1}-352.146$	$\Delta \mathrm{a} 2.54570$
$A_{2}-\quad 0.137$	$B_{2}-$ r." ${ }^{\prime \prime}$	$C_{2}+1{ }^{\prime \prime} 14$	$\Delta \lambda 2.74836$
$\Delta \phi-470.121$	$\Delta \lambda+560.122$	$\Delta \alpha-351 .{ }^{\prime \prime}{ }^{\prime \prime}$	$\left(\phi_{2}+\phi_{1}\right) 9.79734$

15. Trigonometric Leveling.

a. Computation of heights from observed zenith distances.

Let $\quad s=$ sea level distance between two points P_{1} and P_{2},
$H_{1}, H_{2}=$ heights above sea level of P_{1} and P_{2},
$z_{1}=$ observed zenith distance of P_{2} from P_{1},
$z_{2}=$ observed zenith distance of P_{1} from P_{2},
$\rho=$ radius of curvature of vertical section at P_{1} through P_{2}, or at P_{2} through P_{1}, the curvature being sensibly the same for both for this purpose,
$C=$ angle at centre of curvature subtended by s,
$m_{1}, m_{2}=$ coefficients of refraction at P_{1} and P_{2},
$\Delta z_{1}, \Delta z_{2}=$ angles of refraction at P_{1} and P_{2}.
Then, the fundamental relations are

$$
\begin{gather*}
C=\frac{s}{\rho}, \quad \Delta z_{1}=m_{1} C, \quad \Delta z_{2}=m_{2} C \tag{I}\\
z_{1}+z_{2}+\Delta z_{1}+\Delta z_{2}=180^{\circ}+C \\
H_{2}-H_{1}=s \tan \frac{1}{2}\left(z_{2}+\Delta z_{2}-z_{1}-\Delta z_{1}\right)\left(\mathrm{I}+\frac{H_{2}+H_{1}}{2 \rho}+\frac{s^{2}}{12 \rho^{2}}+\ldots\right) \tag{2}
\end{gather*}
$$

When the zenith distances z_{1} and z_{2} are simultaneous, or when Δz_{1} and Δz_{2} are assumed to be equal, (2) becomes

$$
\begin{equation*}
H_{2}-H_{1}=s \tan \frac{1}{2}\left(z_{2}-z_{1}\right)\left(1+\frac{H_{2}+H_{\mathrm{I}}}{2 \rho}+\frac{s^{2}}{12 \rho^{2}}+\ldots\right) \tag{3}
\end{equation*}
$$

For the case of a single observed zenith distance z_{1}, say, and a known or assumed value of $m=m_{1}=m_{2}$, the following formula may be applied :

$$
\begin{equation*}
H_{2}-H_{1}=s \cot z_{1}+\frac{\mathbf{1}-2 m}{2 \rho} s^{2}+\frac{\mathbf{1}-m}{\rho} s^{2} \cot ^{2} z_{1} \tag{4}
\end{equation*}
$$

The coefficient of refraction m varies very greatly under different atmospheric conditions. Its average value for land lines is about 0.07 . The following table gives the values of $\log \frac{1}{2}(1-2 m)$ and $\log (1-m)$ for values of m ranging from 0.05 to 0.10. It is taken from Appendix 18, Report of U. S. Coast and Geodetic

Survey for 1876 . Table 12 taken from the same source gives values of $\log \mathrm{s}$ needed for use in (3) and (4).

Table of values of $\log \frac{1}{2}(1-2 m)$ and $\log (1-m)$.

m	$\log \frac{1}{2}(\mathrm{I}-2 m)$.	$\log (\mathrm{I}-m)$.	m	$\log \frac{1}{2}(\mathrm{I}-2 m)$.	$\log (1-m)$.
0.050	9.6532 I	9.978	0.075	9.62839	9.966
51	65225	77	76	62737	66
52	65128	77	77	62634	65
53	65031	76	78	62531	65
54	64933	76	79	62428	64
0.055	9.64836	9.975	0.080	9.62325	9.964
56	64738	75	81	62221	63
57	64640	75	82	62118	63
58	64542	74	83	62014	62
59	64444	74	84	61910	62
0.060	9.64345	9.973	0.085	9.61805	9.961
61	64246	73	86	61700	61
62	64147	72	87	61595	60
63	64048	72	88	61490	60
64	63949	71	89	61384	60
0.065	9.63849	$9 \cdot 971$	0.090	9.61278	9.959
66	63749	70	91	61172	59
67	63649	70	92	61066	58
68	63548	69	93	60959	58
69	63448	69	94	60853	57
0.070	9.63347	9.968	0.095	9.60746	9.957
71	63246	68	96	60638	56
72	63144	68	97	60531	56
73	63043	67	98	60423	55
74	62941	67	99	60315	55
			0.100	9.60206	9.954

For less precise work one may use equation (4) in the form

$$
\begin{equation*}
H_{2}-H_{1}=s \cot z_{1}+c s^{2} \tag{5}
\end{equation*}
$$

wherein, if we make $m=0.07$ and use for ρ its average value, or $\sqrt{\rho_{m} \rho_{n}}$ for latitude 45°,

$$
\begin{aligned}
\log c & =2.313-10 \text { for } s \text { in feet, } \\
& =2.829-10 \text { for } s \text { in metres. }
\end{aligned}
$$

Thus, for a distance (s) of 10 miles the value of the term $c s^{2}$ in (5) is 57.3 feet.
If altitudes a_{1}, say, are observed in the place of zenith distances z_{1}, it is most convenient to write (5) thus:-

$$
\begin{equation*}
H_{2}-H_{1}= \pm s \tan \alpha_{1}+c s^{2} \tag{6}
\end{equation*}
$$

where the upper sign is used when a_{1} is an angle of elevation and the lower sign when a_{1} is an angle of depression.

b. Coefficients of refraction.

When z_{1} and z_{2} are both observed for a given line, a coefficient of refraction may be computed from the assumption of equality of coefficients at the two ends of the line. Thus, equations (i) give

$$
\Delta z_{1}+\Delta z_{2}=180^{\circ}+C-\left(z_{1}+z_{2}\right)
$$

or

$$
\left(m_{1}+m_{2}\right) \frac{s}{\rho}=180^{\circ}+\frac{s}{\rho}-\left(z_{1}+z_{2}\right)
$$

whence

$$
m_{1}+m_{2}=\mathrm{I}-\frac{\rho}{s}\left(z_{1}+z_{2}-180^{\circ}\right)
$$

Assuming $m_{1}=m_{2}=m$, and supposing $z_{1}+z_{2}-180^{\circ}$ expressed in seconds of arc,

$$
\begin{aligned}
& \quad m=\frac{1}{2}\left\{1-\frac{\rho}{s \rho^{\prime \prime}}\left(z_{1}+z_{2}-180^{\circ}\right)\right\} . \\
& \rho^{\prime \prime}=206264^{\prime \prime} 8, \quad \log \rho^{\prime \prime}=5.314425^{1} \\
& \text { c. Dip and distance of sea horizon. }
\end{aligned}
$$

Let
$h=$ height of eye above sea level,
$\delta=$ dip or angle of depression of horizon,
$s=$ distance of horizon from observer.

Then

$$
\begin{aligned}
\delta \text { (in seconds) } & =58.82 \sqrt{h \text { in feet }} \\
& =106.54 \sqrt{h \text { in metres. }} \\
s \text { (in miles) } & =1.317 \sqrt{h \text { in feet, }} \\
s \text { (in kilometres) } & =3.839 \sqrt{h \text { in metres. }}
\end{aligned}
$$

The above formulas take account of curvature and refraction. They depend on the value 0.0784 for the coefficient of refraction, and are quite as accurate as the uncertainties in such data justify. For convenience of memory, and for an accuracy amply sufficient in most cases, the coefficients of the radicals in the last two formulas may be written $\frac{4}{3}$ and $\frac{1}{5}$ respectively.

i6. Miscellaneous Formulas.

a. Correction to observed angle for eccentric position of instrument

Let C^{\prime} be the eccentric position of the instrument, and C_{0} the observed value of the angle at that point between two other points A and B. Let C denote the central point as well as the angle $A C B$ desired. Call the distance $C C^{\prime} r$ and denote the angle $A C C^{\prime}$ by θ. Denote the lines $B C$ and $A C$, which are assumed to be sensibly the same as $B C^{\prime}$ and $A C^{\prime}$, by a and b respectively. Then

$$
\begin{gathered}
C-C_{0}(\text { in seconds })=\frac{\rho^{\prime \prime} r \sin \left(\theta-C_{0}\right)}{a}-\frac{\rho^{\prime \prime} r \sin \theta}{b}, \\
\rho^{\prime \prime}=206264 .^{\prime \prime} 8, \quad \log \rho^{\prime \prime}=5.3144251 .
\end{gathered}
$$

Attention must be paid to the signs of $\sin \left(\theta-C_{0}\right)$ and $\sin \theta$, and to the fact that angles are counted from A towards B through 360°. A diagram drawn in accordance with the above specifications will elucidate any special case.

b. Reduction of measured base to sea level.

Let l be the length of the bar, tape or other unit used in measuring the base. Let l_{0} be the corresponding length reduced to sea level for a height h, this latter being the observed height of l. Then if ρ denote the radius of curvature of the earth's surface in the direction of the base,

$$
l_{0}=\frac{\rho l}{\rho+h}=\left(1-\frac{h}{\rho}+\ldots\right) l
$$

with sufficient accuracy. Hence, for the whole length of the base,

$$
\Sigma l_{0}=\Sigma l-\frac{\mathrm{x}}{\rho} \Sigma l h
$$

If L denote the total measured length, L_{0} the corresponding total sea level length, and H the mean value of the heights h, the above equation gives

$$
L_{0}=L-L \frac{H}{\rho}
$$

c. The three-point problem.

In this problem the positions of three points A, B, C, and hence the elements of the triangle they form, are given together with the two angles $A P C$ and $B P C$ at a point P whose position is required. Denote the angles and the sides of the known triangle by A, B, C, and a, b, c, respectively. Also put

$$
\begin{array}{ll}
A P C=\beta, & B P C=a, \\
P A C=x, & P B C=y .
\end{array}
$$

Then the sum of the angles in the quadrilateral $P A C B$ is
whence

$$
a+\beta+x+y+C=360^{\circ}
$$

$$
\begin{equation*}
\frac{1}{2}(x+y)=180^{\circ}-\frac{1}{2}(\alpha+\beta+C) . \tag{I}
\end{equation*}
$$

Compute an auxiliary angle z from the equation

$$
\begin{equation*}
\tan z=\frac{a \sin \beta}{b \sin a} ; \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\tan \frac{1}{2}(x-y)=\tan \left(z-45^{\circ}\right) \tan \frac{1}{2}(x+y) . \tag{3}
\end{equation*}
$$

These three equations give all the data essential to a complete determination of the position of P. Any special case should be elucidated by a diagram drawn in accordance with the specifications given above.

When the positions of the points A, B, C are given on a map, the position of P on the same map may be found graphically by drawing lines making angles with each other equal to the given angles u and β from a point on a piece of tracing paper, and then placing this tracing on the map so as to meet the required conditions. This ready method of solving the problem is often sufficient.

17. Salient Facts of Physical Geodesy.

a. Area of earth's surface, areas of continents, area of oceans.*

Square miles.

b. Average heights of continents and depths of oceans. \dagger

c. Volume, surface density, mean density, and mass of earth.

Volume of earth $=259880000000$ cubic miles.
$=1083200000000$ cubic kilometres.
$=260 \times 10^{9}$ cubic miles (about).
$=108 \times{ }_{10}{ }^{10}$ cubic kilometres (about).
Surface density of earth $=2.56 \pm 0.16 \ddagger$
Mean density of earth $=5.576 \pm 0.016$.

* Derived from relative areas given in Helmert's Geodüsie, Band II. p. 3ז3.
\dagger Helmert's Geodäsie, Band II. p. 3 I 3.
\ddagger These densities are given by Professor Wm. Harkness in his memoir on The Solar Parallax and Related Constants. The surface density applies to that portion of the earth's crust which lies above and within a shell ten miles thick, the lower surface of this shell being ten miles beiow sea level.

Assuming the mass of a cubic foot of water to be 62.28 pounds (at $62^{\circ} \mathrm{F}$.),

$$
\begin{aligned}
\text { Mass of earth } & =13284 \times 10^{21} \text { pounds. } \\
& \left.=6642 \times 10^{18} \text { tons (of } 2000 \mathrm{lbs} .\right) . \\
& =60258 \times 10^{20} \text { kilogrammes. }
\end{aligned}
$$

d. Principal moments of inertia and energy of rotation of earth.
$M=$ mass of earth,
$A=$ moment of inertia of earth about an axis in its equator,
$C=$ moment of inertia about axis of rotation,
$a=$ equatorial axis of earth,
$\omega=$ angular velocity of earth,
$=(2 \pi / 86164)$ for mean solar second as unit of time.
Then \dagger

$$
\begin{aligned}
A & =0.325 M a^{2}, \\
C & =0.326 M a^{2} .
\end{aligned}
$$

Energy of rotation of earth $=\frac{1}{2} \omega^{2} C$.
$=0.163 \omega^{2} M \alpha^{2}$.
$=504 \times 10^{28}$ foot-poundals.
$=217 \times 10^{26}$ kilogramme-metres.
$=212 \times 10^{85}$ ergs.

References.

The most exhaustive treatise on the theory of geodesy is found in "Die Mathematischen und Physikalischen Theorieen der Höheren Geodäsie," von Dr. F. R. Helmert. Leipzig: B. G. Teubner ; 8vo, 1880 (vol. i.), 1884 (vol. ii.). An excellent work on the practical as well as theoretical features of the subject is "Die geodätischen Hauptpunkte und ihre Co-ordinaten," von G. Zachariae ; autorisirte deutsche Ausgabe, von E. Lamp. Berlin : Robert Oppenheim, 8vo, 1878. Of works in English the most comprehensive is " Geodesy," by A. R. Clarke. Oxford: The Clarendon Press, 8vo, 188 o .

[^6]
ASTRONOMY.

I. The Celestial Sphere. Planes and Circles of Reference.

The celestial sphere is a sphere to which it is convenient to refer stars and other celestial objects. Its centre is assumed to be coincident with the eye of the observer, and the objects referred to it are supposed to lie in its surface. The orientation of this sphere is defined by its equator, which is assumed to be parallel to the earth's equator. The equator is thus the principal plane of reference. Other planes of reference are the plane of the horizon, which is perpendicular to the plumb line at the place; the meridian, which is a plane through the place and the earth's axis of rotation; the prime-vertical, which is a vertical plane at the place at right angles to the meridian ; and the ecliptic, which is a plane parallel to the plane of the earth's orbit. These planes cut the surface of the sphere in great circles called the equator, the horizon, the meridian, etc. The points on the sphere defined by the intersection of the meridians, or the points where the axis of the equator pierces the sphere, are called the poles. Similarly, the prolongation of the plumb line upwards pierces the sphere in the zenith, and its prolongation downwards pierces the sphere in the nadir. Great circles passing through the zenith are called vertical circles.

2. Spherical Co-ordinates.

a. Notation.

The position of a celestial body may be defined by several systems of co-ordinates. The most important of these in practical astronomy are the azimuth and altitude system and the hour angle and declination system. In the first of these the azimuth of a star or other body is the angle between the meridian plane of the place and a vertical plane through the star. It is measured, in general, from the south around by the west through 360°. The altitude of a star is its angular distance above the horizon, and its zenith distance is the complement of the altitude. In the second system the hour angle of a star is the angle between the meridian plane of the place and a meridian plane through the star. It is measured towards the west through 360°. The declination of a star is its angular distance above or below the equator; the complement of the declination is called the polar distance.

The angular distance of the pole above the horizon is equal to the zenith distance of the equator, or to the latitude of the place. Likewise, the altitude of the equator and the zenith distance of the pole are each equal to the complement of the latitude at any place.

These quantities are usually designated by the following notation : -
$A=$ the azimuth of a star or object,
$h=$ its altitude,
$z=$ its zenith distance $=90^{\circ}-h$,
$t=$ its hour angle,
$\delta=$ its declination,
$p=$ its polar distance $=90^{\circ}-\delta$,
$q=$ the parallactic angle, or angle at the star between the pole and the zenith,
$\phi=$ the latitude of the place of observation.
b. Altitude and azimuth in terms of declination and hour angle.

The fundamental relations for this problem are -

$$
\begin{array}{rr}
\sin h & =\sin \phi \sin \delta+\cos \phi \cos \delta \cos t, \\
\cos h \cos A & =-\cos \phi \sin \delta+\sin \phi \cos \delta \cos t, \tag{I}\\
\cos h \sin A & =r
\end{array}
$$

When it is desired to compute both A and h by means of logarithms, the most convenient formulas are,

$$
\begin{align*}
m \sin M & =\sin \delta, & \tan M & =\frac{\tan \delta}{\cos t}, \\
m \cos M & =\cos \delta \cos t, & & \tan A=\frac{\tan t \cos M}{\sin (\phi-M)}, \\
\sin h & =m \cos (\phi-M), & & \cos , \tag{2}\\
\cos h \cos A & =m \sin (\phi-M), & \tan h=\frac{\cos A}{\cos h \sin A}=\cos \delta \sin t, &
\end{align*}
$$

For the computation of A and z separately, the following formulas are useful:

$$
\begin{align*}
\tan A & =-\frac{\sin t}{\cos \phi \tan \delta(\mathrm{I}-\tan \phi \cot \delta \cos t)} \tag{3}\\
& =-\frac{a \sin t}{1-b \cos t},
\end{align*}
$$

where

$$
a=\sec \phi \cot \delta, \quad b=\tan \phi \cot \delta .
$$

Formulas (3) are especially appropriate for the computation of a series of azimuths of close circumpolar stars, since a and b will be constant for a given place and date.

$$
\begin{gather*}
\cos z=\cos (\phi \sim \delta)-2 \cos \phi \cos \delta \sin ^{2} \frac{1}{2} t \\
\sin ^{2} \frac{1}{2} z=\sin ^{2} \frac{1}{2}(\phi \sim \delta)+\cos \phi \cos \delta \sin ^{2} \frac{1}{2} t \tag{4}\\
(\phi \sim \delta)=\phi-\delta, \text { for } \phi>\delta \\
=\delta-\phi, \text { for } \phi<\delta .
\end{gather*}
$$

For logarithmic application of (4) we may write

$$
\begin{gather*}
m^{2}=\cos \phi \cos \delta, \quad n^{2}=\sin ^{2} \frac{1}{2}(\phi \sim \delta) \\
\tan N=\frac{m}{n} \sin \frac{1}{2} t \tag{5}\\
\sin \frac{1}{2} z=\frac{n}{\cos N}=\frac{m}{\sin N} \sin \frac{1}{2} t
\end{gather*}
$$

c. Declination and hour angle in terms of altitude and azimuth.

The fundamental relations for this case are

$$
\begin{align*}
\sin \delta & =\sin \phi \sin h-\cos \phi \cos h \cos A \\
\cos \delta \cos t & =\cos \phi \sin h+\sin \phi \cos h \cos A \tag{I}\\
\cos \delta \sin t & =\quad \cos h \sin A
\end{align*}
$$

For logarithmic computation by means of an auxiliary angle M one may write

$$
\begin{align*}
& m \sin M=\cos h \cos A, \quad \tan M=\cot h \cos A \\
& m \cos M=\sin h, \\
& \sin \delta=m \sin (\phi-M), \quad \tan t=\frac{\tan A \sin M}{\cos (\phi-M)} \tag{2}\\
& \cos \delta \cos t=m \cos (\phi-M), \\
& \cos \delta \sin t=\cos h \sin A, \quad \tan \delta=\tan (\phi-M) \cos t
\end{align*}
$$

d. Hour angle and azimuth in terms of zenith distance.

$$
\begin{gathered}
\cos t=\frac{\cos z-\sin \phi \sin \delta}{\cos \phi \cos \delta} \\
\tan ^{2} \frac{1}{2} t=\frac{\sin (\sigma-\phi) \cos (\sigma-\delta)}{\cos \sigma \cos (\sigma-z)}, \quad \sigma=\frac{1}{2}(\phi+\delta+z) . \\
\cos A=\frac{\sin \phi \cos z-\sin \delta}{\cos \phi \sin z} \\
\tan ^{2} \frac{1}{2} A=\frac{\sin (\sigma-\phi) \cos (\sigma-z)}{\cos \sigma \sin (\sigma-\delta)}, \quad \sigma=\frac{1}{2}(\phi+\delta+z)
\end{gathered}
$$

e. Formulas for parallactic angle.
$\cos z=\sin \delta \sin \phi+\cos \delta \cos \phi \cos t$, $\sin z \cos q=\cos \delta \sin \phi-\sin \delta \cos \phi \cos t$, $\sin z \sin q=\quad \cos \phi \sin t$,
$\sin \delta=\cos z \sin \phi+\sin z \cos \phi \cos t$,
$\cos \delta \cos q=\sin z \sin \phi+\cos z \cos \phi \cos A$,
$\cos \delta \sin q=\quad \cos \phi \sin A$.

The first three of these are adapted to logarithmic computation as follows : -

$$
\begin{aligned}
n \sin N & =\cos \phi \cos t, \\
n \cos N & =\sin \phi, \\
\cos z & =n \sin (\delta+N), \\
\sin z \cos q & =n \cos (\delta+N), \\
\sin z \sin q & =\cos \phi \sin t ;
\end{aligned}
$$

whence

$$
\begin{align*}
\tan N & =\cot \phi \cos t, \\
\tan z \sin q & =\frac{\tan t \sin N}{\sin (\delta+N)}, \tag{2}\\
\tan z \cos q & =\cot (\delta+N) .
\end{align*}
$$

A similar adaptation results for the last three of equations (1) by interchanging δ and z. The equations (2) give both z and q in terms of ϕ, δ, and t, without ambiguity, since $\tan z$ is positive for stars above the horizon.
If A, z, and q are all required from ϕ, δ, and t, they are best given by the Gaussian relations

$$
\begin{align*}
& \sin \frac{1}{2} z \sin \frac{1}{2}(A+q)=\sin \frac{1}{2} t \cos \frac{1}{2}(\phi+\delta), \\
& \sin \frac{1}{2} z \cos \frac{1}{2}(A+q)=\cos \frac{1}{2} t \sin \frac{1}{2}(\phi-\delta), \tag{3}\\
& \cos \frac{1}{2} z \sin \frac{1}{2}(A-q)=\sin \frac{1}{2} t \sin \frac{1}{2}(\phi+\delta), \\
& \cos \frac{1}{2} z \cos \frac{1}{2}(A-q)=\cos \frac{1}{2} t \cos \frac{1}{2}(\phi-\delta) .
\end{align*}
$$

f. Hour angle, azimuth, and zenith distance of a star at elongation.

In this case the parallactic angle is 90° and the required quantities are given by the formulas

$$
\begin{align*}
& \cos t=\frac{\tan \phi}{\tan \delta} \\
& \sin A=\frac{\cos \delta}{\cos \phi} \tag{I}\\
& \cos z=\frac{\sin \phi}{\sin \delta}
\end{align*}
$$

When all of the quantities t, A, and z are to be computed the following formulas are more advantageous: -

$$
\begin{align*}
& K^{2}=\sin (\delta+\phi) \sin (\delta-\phi), \\
& \sin t=\frac{K}{\cos \phi \sin \delta}, \quad \cos A=\frac{K}{\cos \phi}, \quad \sin z=\frac{K}{\sin \delta}, \tag{2}\\
& \tan t=\frac{K}{\sin \phi \cos \delta}, \quad \tan A=\frac{\cos \delta}{K}, \quad \tan z=\frac{K}{\sin \phi} .
\end{align*}
$$

g. Hour angle, zenith distance, and parallactic angle for transit of a star across prime vertical.
In this case the azimuth angle is 90° and the required quantities are given by the formulas

$$
\begin{align*}
& \cos t=\frac{\tan \delta}{\tan \phi} \\
& \cos z=\frac{\sin \delta}{\sin \phi} \tag{I}\\
& \sin q=\frac{\cos \phi}{\cos \delta}
\end{align*}
$$

or, if all of them are to be computed, by the formulas

$$
\begin{gather*}
K^{2}=\sin (\phi+\delta) \sin (\phi-\delta) \\
\sin t=\frac{K}{\sin \phi \cos \delta}, \quad \sin z=\frac{K}{\sin \phi}, \quad \cos q=\frac{K}{\cos \delta} \tag{2}\\
\tan t=\frac{K}{\cos \phi \sin \delta}, \quad \tan z=\frac{K}{\sin \widehat{\delta}} \quad \tan q=\frac{\cos \phi}{K}
\end{gather*}
$$

For special accuracy the following group will be preferred : -

$$
\begin{gather*}
\tan ^{2} \frac{1}{2} t=\frac{\sin (\phi-\delta)}{\sin (\phi+\delta)} \\
\tan ^{2} \frac{1}{2} z=\frac{\tan \frac{1}{2}(\phi-\delta)}{\tan \frac{1}{2}(\phi+\delta)} \tag{3}\\
\tan ^{2}\left(45^{\circ}-\frac{1}{2} q\right)=\tan \frac{1}{2}(\phi+\delta) \tan \frac{1}{2}(\phi-\delta)
\end{gather*}
$$

h. Hour angle and azimuth of a star when in the horizon, or at the time of rising or setting.

In this case the zenith distance of the star is 90°, and the required quantities are given by

$$
\begin{aligned}
\cos t & =-\tan \phi \tan \delta \\
\cos A & =-\frac{\sin \delta}{\cos \phi}
\end{aligned}
$$

or by

$$
\begin{aligned}
\tan ^{2} \frac{1}{2} t & =\frac{\cos (\phi-\delta)}{\cos (\phi+\delta)} \\
\tan ^{2} \frac{1}{2} A & =\frac{\tan \frac{1}{2}\left(90^{\circ}-\phi+\delta\right)}{\tan \frac{1}{2}\left(90^{\circ}-\phi-\delta\right)}
\end{aligned}
$$

On account of refraction, the values of t and A given by these formulas are subject to the following corrections, to wit : -

$$
\Delta t=\frac{R}{\cos \phi \cos \delta \sin t}, \quad \Delta A=\frac{\tan \phi}{\sin A} R
$$

where R is the refraction in the horizon. Thus the actual values of the hour angle and azimuth at the time of rising or setting of a star are

$$
t+\Delta t \text { and } A+\Delta A
$$

i. Differential formulas.

The general differential relations for the altitude and azimuth and the declination and hour angle systems of coördinates are : -

$$
\begin{align*}
d z & =-\cos q d \delta+\sin q \cos \delta d t+\cos A d \phi \tag{I}\\
\sin z d A & =\sin q d \delta+\cos q \cos \delta d t-\cos z \sin A d \phi \\
d \delta & =-\cos q d z+\sin q \sin z d A+\cos t d \phi \tag{2}\\
\cos \delta d t & =\sin q d z+\cos q \sin z d A+\sin \delta \sin t d \phi
\end{align*}
$$

The following values derived from (r) are of interest as showing the dependence of z and A on t in special cases : -

For a star in the meridian $=0,=\frac{\cos \delta}{\sin z}$,
For a star in the prime vertical $=\cos \phi,=\sin \phi$,
For a star at elongation $=\cos \delta,=0$.

3. Relations of Different Kinds of Time used in Astronomy.

a. The sidereal and solar days.

The sidereal day is the interval between two successive transits of the vernal equinox over the same meridian. The sidereal time at any instant is the hour angle of the vernal equinox reckoned from the meridian towards the west from o to 24 hours. The sidereal time at any place is o when the vernal equinox is in the meridian of that place.

The solar day is the interval between two successive transits of the sun across any meridian ; and the solar time at any instant is the hour angle of the sun at that instant. The solar day begins at any place when the sun is in the meridian of that place.

The mean solar day is the interval between two successive transits over the same meridian of a fictitious sun, called the mean sun, which is assumed to move uniformly in the equator at such a rate that it returns to the vernal equinox at the same instant with the actual sun.

Time reckoned with respect to the actual sun is called apparent time, while that reckoned with respect to the mean sun is called mean time. The difference between apparent and mean time, which amounts at most to about 16^{m}, is called the equation of time. This quantity is given for every day in the year in ephemerides.

The sidereal time when a star or other object crosses the meridian is called the right ascension of the object. The right ascension of the mean sun is also called the sidereal time of mean noon. This time is given for every day in the year in ephemerides for particular meridians, and can be found for any meridian by allowing for the difference in longitude.

The time to which ephemerides and most astronomical calculations are referred
is the solar day, beginning at noon, and divided to hours numbered continuously from 0^{h} to 24^{h}. This is called astronomical time; and such a day is called the astronomical day. It begins, therefore, 12 hours later than the civil day.

b. Relation of apparent and mean time.

$A=$ apparent time $=$ hour angle of real sun,
$M=$ mean time $=$ hour angle of mean sun,
$E=$ equation of time.

$$
M=A+E
$$

In the use of this relation, \boldsymbol{E} may be most conveniently derived (by interpolation for the place of observation) from an ephemeris.

c. Relation of sidereal and mean solar intervals of time.

$I=$ interval of mean solar time,
$I^{\prime}=$ corresponding interval in sidereal time,
$r=$ the ratio of the tropical year expressed in sidereal days to the tropical year expressed in mean solar days

$$
\begin{aligned}
& =\frac{366.2422}{365.2422}=1.002738 \\
I^{\prime} & =r I=I+(r-\mathrm{s}) I=I+0.00273^{8} I \\
I & =r^{-1} I^{\prime}=I^{\prime}-\left(\mathrm{⿺}-r^{-1}\right) I^{\prime}=I^{\prime}-0.00273^{\circ} I^{\prime} .
\end{aligned}
$$

Tables for making such calculations are usually given in ephemerides (see, for example, the American Ephemeris). Short tables for this purpose are Tables 34 and 35 of this volume.

Frequent reference is made to the relations 24^{h} sidereal time $=23^{h} 56^{m} 04 .^{\circ}$ ogr solar time, 24^{h} mean time $=24^{h} \circ 3^{m} 56 .^{s} 555$ sidereal time.
d. Interconversion of sidereal and mean solar time.

$$
\begin{aligned}
T_{m} & =\text { mean time at any place }, \\
T_{s} & =\text { corresponding sidereal time } \\
& =\text { right ascension of meridian of the place, } \\
A & =\text { right ascension of mean sun for place and date, } \\
& =\text { sidereal time of mean noon for place and date. }
\end{aligned}
$$

$T_{s}=A+T_{m}$ expressed in sidereal time. $T_{m}=\left(T_{s}-A\right)$ expressed in mean time.

The quantity A is given in the ephemerides for particular meridians, and can be found by interpolation for any meridian whose longitude with respect to the meridian of the ephemeris is known. The formulas assume that A is taken out of the ephemeris for the next preceding mean noon.
e. Relation of sidereal time to the right ascension and hour angle of a star.

```
\(T_{s}=\) sidereal time at any place,
\(=\) right ascension of the meridian of the place,
\(a=\) right ascension of a star,
\(t=\) the hour angle of the star at the time \(T_{0}{ }^{\circ}\)
```

$$
T_{s}=a+t, \quad t=T_{0}-a
$$

4. Determination of Time.

a. By meridian transits.

A determination of time consists in finding the correction to the clock, chronometer, or watch used to record time. If T_{0} denote the true time at any place of an event, T the corresponding observed clock time, and ΔT the clock correction,

$$
T_{0}=T+\Delta T
$$

The simplest way to determine the clock correction is to observe the transit of a star, whose right ascension is known, across the meridian. In this case the true time $T_{0}=a$, the right ascension of the star ; and if T is the observed clock time of the transit,

$$
\Delta T=a-T
$$

Meridian transits of stars may be observed by means of a theodolite or transit instrument mounted so that its telescope describes the meridian when rotated about its horizontal axis. The meridian transit instrument is specially designed for this purpose, and affords the most precise method of determining time.*

Since it is impossible to place the telescope of such an instrument exactly in the meridian, it is essential in precise work to determine certain constants, which define this defect of adjustment, along with the clock correction. These constants are the azimuth of the telescope when in the horizon, the inclination of the horizontal axis of the telescope, and the error of collimation of the telescope. \dagger

Let
$a=$ azimuth constant,
$b=$ inclination or level constant,
$c=$ collimation constant.
a is considered plus when the instrument points east of south; b is plus when the west end of the rotation axis is the higher; and c is intrinsically plus when the star observed crosses the thread (or threads) too soon from lack of collimation. (The latter constant is generally referred to the clamp or circle on the horizontal axis of the instrument.)

[^7]Also let

$$
\begin{aligned}
\phi & =\text { latitude of the place } \\
\delta & =\text { declination of star observed, } \\
\alpha & =\text { right ascension of star observed, } \\
T & =\text { observed clock time of star's transit, } \\
\Delta T & =\text { the clock correction at an assumed epoch } T_{0} \\
r & =\text { the rate of the clock, or other timepiece, } \\
A & =\frac{\sin (\phi-\delta)}{\cos \delta}=\text { the " azimuth factor," } \\
B & =\frac{\cos (\phi-\delta)}{\cos \delta}=\text { the " level factor," } \\
C & =\frac{\mathbf{1}}{\cos \delta}=\text { the "collimation factor." }
\end{aligned}
$$

Then, when a, b, c are small (conveniently less than 10^{8} each, and in ordinary practice less than I^{s} each),

$$
T+\Delta T+A a+B b+C c+r\left(T-T_{0}\right)=a
$$

This is known as Mayer's formula for the computation of time from star transits.
The quantity $B b$ is generally observed directly with a striding level. Assuming it to be known and combined with T, the above equation gives

$$
\begin{equation*}
\Delta T+A a+C c+r\left(T-T_{0}\right)=\alpha-T \tag{I}
\end{equation*}
$$

This equation involves four unknown quantities, $\Delta T, a, c$, and r; so that in general it will be essential to observe at least four different stars in order to get the objective quantity ΔT. Where great precision is not needed, the effect of the rate, for short intervals of time, may be ignored, and the collimation c may be rendered insignificant by adjustment. Then the equation (I) is simplified in

$$
\begin{equation*}
\Delta T+A a=a-T \tag{2}
\end{equation*}
$$

This shows that observations of two stars of different declinations will suffice to give ΔT. Since the factor A is plus for stars south of the zenith (in north latitude) and minus for stars north of the zenith, if stars be so chosen as to make the two values of A equal numerically but of opposite signs, ΔT will result from the mean of two equations of the form (2). With good instrumental adjustments (b and c small), this simple sort of observation with a theodolite will give ΔT to the nearest second.

A still better plan for approximate determination of time is to observe a pair of north and south stars as above, and then reverse the telescope and observe another pair similarly situated, since the remaining error of collimation will be partly if not wholly eliminated. Indeed, a well selected and well observed set of four stars will give the error of the timepiece used within a half second or less. This method is especially available to geographers who may desire such an approximate value of the timepiece correction for use in determining azimuth. It will suffice in the application of the method to set up the instrument (theodolite or transit) in the vertical plane of Polaris, which is always close enough to the meridian. The determination will then proceed according to the following programme: -
I. Observe time of transit of a star south of zenith,
2. Observe time of transit of a star north of zenith.

Reverse telescope,
3. Observe time of transit of another star south of zenith,
4. Observe time of transit of another star north of zenith.

Each star observation will give an equation of the form (\mathbf{r}), and the mean of the four resulting equations is

$$
\Delta T+a \frac{\Sigma A}{4}+c \frac{\Sigma C}{4}+r \frac{\Sigma\left(T-T_{0}\right)}{4}=\frac{\Sigma(a-T)}{4}
$$

Now the coefficient of r in this equation may be always made zero by taking for the epoch T_{0} the mean of the observed times T. Likewise, ΣA and ΣC may be made small by suitably selected stars, since two of the A 's and C 's are positive and two negative. The value $\frac{1}{4} \Sigma(\alpha-T)$ is thus always a close approximation to ΔT for the epoch $T_{0}=\frac{1}{4} \Sigma T$, when ΣA and ΣC approximate to zero. But if these sums are not small, approximate values of a and c may be found from the four equations of the form (\mathbf{r}), neglecting the rate, and these substituted in the above formula will give all needful precision.

For refined work, as in determining differences of longitude, several groups of stars are observed, half of them with the telescope in one position and half in the reverse position, and the quantities $\Delta T, a, c$, and r are computed by the method of least squares. In such work it is always advantageous to select the stars with a view to making the sums of the azimuth and collimation coefficients approximate to zero, since this gives the highest precision and entails the simplest computations.*

b. By a single observed altitude of a star.

An approximate determination of time, often sufficient for the purposes of the geographer, may be had by observing the altitude or zenith distance of a known star. The method requires also a knowledge of the latitude of the place.

Let

$$
\begin{aligned}
z_{1} & =\text { the observed zenith distance of the star, } \\
R & =\text { the refraction, } \\
z & =\text { the true zenith distance of the star, } \\
& =z_{1}+R, \\
a, \delta, & =\text { the right ascension and declination of the star, } \\
t & =\text { hour angle of star at time of observation } \\
T & =\text { observed time when } z_{1} \text { is measured, } \\
\Delta T & =\text { correction to timepiece, } \\
\phi & =\text { latitude of place. }
\end{aligned}
$$

Then the hour angle t may be computed by

$$
\tan ^{2} \frac{1}{2} t=\frac{\sin (\sigma-\phi) \sin (\sigma-\delta)}{\cos \sigma \cos (\sigma-z)}, \quad \sigma=\frac{1}{2}(\phi+\delta+z)
$$

[^8]Having the hour angle the clock correction ΔT is given by

$$
\Delta T=a+t-T
$$

in which all terms must be expressed in the same unit; i.e., in sidereal or in mean time.

The refraction R may be taken from Table 3 r.
The most advantageous position of the star observed, so far as the effect of an error in the measured quantity z_{1} is concerned, is in the prime vertical, but stars near the horizon should be avoided on account of uncertainties in refraction. The least favorable position of the star is in the meridian.

Compared with the preceding method the present method is inferior in precision, but it is often available when the other cannot be applied.

c. By equal altitudes of a star.

This method is an obvious extension of the preceding method, and has the advantage of eliminating the effect of constant instrumental errors in the measured altitudes or zenith distances. Thus it is plain that the mean of the times when a (fixed) star has the same altitude east and west of the meridian, whether one can measure that altitude correctly or not, is the time of meridian transit.

This method may, therefore, give a good approximation to the timepiece correction when nothing better than an engineer's transit, whose telescope can be clamped, is available. When the instrument has a vertical circle (or when a sextant is used) a series of altitudes may be observed before meridian passage of the star, and a similar series in the reverse order with equal altitudes respectively after meridian passage. The half sums of the times of equal altitudes on the two sides of the meridian will give a series of values for the time of meridian transit from which the precision attained may be inferred.

This method is frequently applied to the sun, observations being made before ind after noon. For the theory of the corrections essential in this case on account of the changing position of the sun, on account of inequalities in the observed altitudes, etc., the reader must be referred to special treatises on practical astronomy.*

5. Determination of Latitude.

a. By meridian altitudes.

The readiest method of determining the latitude of a place is to measure the meridian zenith distance or altitude of a known star. When precision is not required this process is a very simple one, since it is only essential to follow a (fixed) star near the meridian until its altitude is greatest, or zenith distance least. Thus, if the observed zenith distance is z_{1}, the true zenith distance z, and the refrac tion R,

$$
z=z_{1}+R ;
$$

[^9]and if the declination of the star is δ and the latitude of the place ϕ,
$$
\phi=\delta \pm z
$$
according as the star is south or north of the zenith.
A more accurate application of the same principle is to observe the altitudes of a circumpolar star at upper and lower culmination (above and below the pole). The mean of these altitudes, corrected for refraction, is the latitude of the place. This process, it will be observed, does not require a knowledge of the star's declination.

b. By the measured altitude of a star at a known time.

$h=$ measured altitude corrected for refraction, $T_{s}=$ observed sidereal time, $a, \delta=$ right ascension and declination of star,
$t=$ hour angle of star,
$\phi=$ latitude of place.
Then ϕ may be computed by means of the following formulas:-

$$
\begin{gathered}
t=T-a \\
\tan \beta=\frac{\tan \delta}{\cos t} \quad \cos \gamma=\frac{\sin h \sin \beta}{\sin \delta} \\
\phi=\beta \pm \gamma
\end{gathered}
$$

In the application of these β may be taken numerically less than 90°, and since t may also be taken less than $90^{\circ}, \beta$ may be taken with the same sign as $\delta . \quad \gamma$ is indeterminate as to sign analytically, but whether it should be taken as positive or negative can be decided in general by an approximate knowledge of the latitude, which is always had except in localities near the equator.

The most advantageous position of a star in determining latitude by this method is in the meridian, and the least advantageous in the prime vertical. When a series of observations on the same star is made, they should be equally distributed about the meridian ; and when more than one star is observed it is advantageous to observe equal numbers of them on the north and south of the zenith.

The application of this method to the pole star is especially well adapted to the means available to the geographer and engineer, namely, a good theodolite and a good timepiece. In this case the following simple formula for the latitude may be used : -

$$
\phi=h-p \cos t+\frac{1}{2} p^{2} \sin \mathrm{r}^{\prime \prime} \sin ^{2} t \tan h
$$

where p is the polar distance of Polaris in seconds (about $5400^{\prime \prime}$), and the other symbols have the same meaning as defined above. Tables giving the logarithms of p and $\frac{1}{2} p^{2} \sin \mathrm{t}^{\prime \prime}$ are published in the American Ephemeris.

c. By the zenith telescope.

The zenith telescope furnishes the most precise means known for the determination of the latitude of a place. For the theory of the instrument and method when applied to refined work the reader must be referred to special treatises.* It will suffice here to state the principle of the method, which may sometimes be advantageously applied by the geographer. Let z_{s} be the meridian zenith distance of a star south of the zenith, and z_{n} the meridian zenith distance of another star north of the zenith. Let δ_{s} and δ_{n} denote the declinations of these stars respectively. Then

$$
\begin{aligned}
& z_{3}=\phi-\delta_{n} \\
& z_{n}=\delta_{n}-\phi,
\end{aligned}
$$

whence

$$
\phi=\frac{1}{2}\left(\delta_{s}+\delta_{n}\right)+\frac{1}{2}\left(z_{s}-z_{n}\right) .
$$

It appears, therefore, that this method requires only that the difference $\left(z_{s}-z_{n}\right)$ be measured. Herein lies the advantage of the method, since that difference may be made small by a suitable selection of pairs of stars. With the zenith telescope the stars are so chosen that the difference $\left(z_{s}-z_{n}\right)$ may be measured by means of a micrometer in the telescope.

The essential principles and advantages of this method may be realized also with a theodolite, or other telescope, to which a vertical circle is attached, the difference $\left(z_{s}-z_{n}\right)$ being measured on the circle ; and a determination of latitude within $5^{\prime \prime}$ or less is thus easy with small theodolites of the best class (i.e., with those whose circles read to $1 \mathbf{o}^{\prime \prime}$ or less by opposite verniers or microscopes).

6. Determination of Azimuth.

a. By observation of a star at a known time.

$T_{s}=$ sidereal time of observation,
a, $\delta=$ right ascension and declination of star observed,
$t=$ hour angle of star,
$=T_{s}-a$,
$\phi=$ latitude of place,
$A=$ azimuth of the star at the time T_{s} counted from the south around by the west through 360°.

The azimuth A may be computed by the formulas

$$
\begin{gather*}
a=\sec \phi \cot \delta, \quad b=\tan \phi \cot \delta, \\
\tan A=-\frac{a \sin t}{\mathrm{r}-b \cos t} \tag{I}
\end{gather*}
$$

The angle A will fall in the same semicircle as t, and A is thus determined by its tangent without ambiguity. The quantities a and b will be sensibly constant for

[^10]a given star and date; and hence they need be computed but once for a series of observations on the same star on one date.

The effects of small errors $\Delta t, \Delta \phi$, and $\Delta \delta$ in the assumed time, latitude, and declination are expressed by

$$
\frac{\cos \delta \cos q}{\sin z} \Delta t, \quad-\sin A \cot z \Delta \phi, \quad \frac{\sin q}{\sin z} \Delta \delta
$$

respectively, where z and q are the zenith distance and parallactic angle of the star. Hence the effect of Δt will vanish for a star at elongation; the effect of $\Delta \phi$ vanishes for a star in the meridian, and is always small (in middle latitudes) for a close circumpolar star; the effect of $\Delta \delta$ vanishes for a star in the meridian. It appears advantageous, therefore, to observe for azimuth (in middle latitudes) close circumpolar stars at elongations, since the effect of the time error is then least, and the effects of errors in the latitude and declination are small and may be eliminated entirely by observing the same star at both elongations.

The hour angle t_{e}, the azimuth A_{e}, and the altitude h_{e} of a star at elongation are given by the formulas (2) of section $2, f$. Those best suited to the purpose are

$$
K^{2}=\sin (\delta+\phi) \sin (\delta-\phi)
$$

$$
\begin{equation*}
\tan t_{e}=\frac{K}{\sin \phi \cos \delta}, \quad \tan A_{e}=\frac{\cos \delta}{K}, \quad \tan h_{e}=\frac{\sin \phi}{K} \tag{2}
\end{equation*}
$$

Knowing the time of elongation of a close circumpolar star, it suffices for many purposes to observe the angle between the star and some reference terrestrial mark at or in the vicinity of that time.

For precise determinations of azimuth it is customary to observe a star near its elongation repeatedly, thus obtaining a series of results whose mean will be sensibly free from errors of observation and errors due to instrumental defects.

The computation of the azimuth A may be made accurately in all cases by the formulas (1); but when a close circumpolar star is observed near elongation, it may be more convenient to use the following formulas:-
$\Delta t=\left(t-t_{e}\right)$, or the interval before or after elongation at the time of observation,
$\Delta A=\left(A-A_{c}\right)$, or the difference in azimuths of the star at the time of elongation and at the time of observation,
$\Delta A^{\prime \prime}=\frac{(15)^{2}}{2 \rho^{\prime \prime}} \frac{\sin \delta \cos \delta}{\sin t_{e} \cos \phi}\left(\Delta t^{s}\right)^{2} \pm \frac{(15)^{8}}{2\left(\rho^{\prime \prime}\right)^{2}} \frac{\sin \delta \cos \delta}{\sin t_{e} \tan t_{e} \cos \phi}\left(\Delta t^{\circ}\right)^{8 .} \cdot *$

* To the same order of approximation one may write in the first term of this expression

$$
\frac{(\mathrm{I} 5)^{2}}{2 \rho^{\prime \prime}}\left(\Delta t^{t}\right)^{2}=\rho^{\prime \prime} 2 \sin ^{2} \frac{1}{2} \Delta t=\frac{2 \sin ^{2} \frac{1}{2} \Delta t}{\sin \mathrm{I}^{\prime \prime}},
$$

which latter is the most convenient form when tables giving $\log \frac{\left(2 \sin ^{2} \frac{1}{2} \Delta t\right)}{\sin x^{\prime \prime}}$ for the argument Δt in time are at hand. Such tables are given in Chauvenet's Manual of Spherical and Practical Astronomy (for full title see p. lxxxii), and in Formeln und Hiilfstafeln fïr Geographische Orts bestimmungen, von Dr. Th. Albrecht. Leipzig: Wilhelm Engelmann, 4to, 2d ed., 1879.

This last formula gives ΔA in seconds of arc when Δt is expressed in seconds of time; Δt is considered positive in all cases (in the use of the formula), and with this convention the positive sign is used when the star is between either elongation and upper culmination, and the negative sign when the star is between either elongation and lower culmination. For a given star, place, and date the coefficients of $\left(\Delta t^{s}\right)^{2}$ and $\left(\Delta t^{s}\right)^{8}$ will be sensibly constant and their logarithms will thus be constant for a series of observations of a star on any date. By reason of the large factors $\left(\rho^{\prime \prime}=206264 .{ }^{\prime \prime} 8\right)^{2}$ and $\tan t_{e}$ in the denominator of the second term, it will be very small unless Δt^{s} is large. Hence this term may often be neglected. Using both terms, the formula will give ΔA for Polaris to the nearest o."or when $\Delta t<40^{m}$ and when observations are made in middle latitudes.

By reference to formulas (2) of section $2, f$, it is seen that

$$
\begin{gathered}
\frac{\sin \delta \cos \delta}{\sin t_{e} \cos \phi}=\frac{\sin ^{2} \delta \cos \delta}{K} \\
\frac{\sin \delta \cos \delta}{\sin t_{e} \tan t_{e} \cos \phi}=\frac{\sin ^{2} \delta \cos ^{2} \delta \sin \phi}{K^{2}}, \\
K^{2}=\sin (\delta+\phi) \sin (\delta-\phi) .^{*}
\end{gathered}
$$

b. By an observed altitude of a star.

$h=$ true altitude of star observed ; i.e., the observed altitude less the refraction,
$\phi=$ latitude of place,
$p=$ polar distance of star,
$A=$ azimuth of star.

$$
\begin{aligned}
\tan ^{2} \frac{1}{2} A & =\frac{\sin (\sigma-\phi) \sin (\sigma-h)}{\cos \sigma \cos (\sigma-p)} \\
\sigma & =\frac{1}{2}(\phi+h+p)
\end{aligned}
$$

The most advantageous position of the star, on account of possible error in the observed value of h, is that in which $\sin A$ is a maximum. This position is then at elongation for stars which elongate, in the prime vertical for stars which cross this great circle, and in the horizon for a star which neither elongates nor crosses the prime vertical. A star will elongate when $p<90^{\circ}-\phi$; it will cross the prime vertical when p lies between $90^{\circ}-\phi$ and 90°; and it will neither elongate nor cross the prime vertical when $p>90^{\circ}$, or when the declination (δ) of the star is negative.

c. By equal altitudes of a star.

By this method, when a fixed star is observed first east of the meridian and then west of the meridian at the same altitude, the direction of the meridian will

[^11]obviously be given by the mean of the azimuth circle readings for the two observed directions. This process will thus give the direction of the meridian free from the effect of any instrumental errors common to the equal altitudes observed. Neither does it require any knowledge of the star's position (right ascension and declination). It is therefore available to one provided with nothing but an instrument for measuring altitudes and azimuths, and is susceptible of considerable precision when a series of such equal altitudes is carefully referred to a terrestrial mark.

When the sun is observed, it is essential to take account of its change in declination between the first and the second observation. Let A_{1} and A_{2} be the true azimuths counted from the meridian toward the east and west respectively at the times t_{1} and t_{2} of the two observations. Also, let $\Delta \delta$ be the increase in declination of the sun in the interval $\left(t_{2}-t_{1}\right)$. Then

$$
A_{2}-A_{1}=\frac{\Delta \delta}{\cos \phi \sin \frac{1}{2}\left(t_{2}-t_{1}\right)} .
$$

Calling the azimuth circle readings for the east and west observations R_{1} and R_{2}, respectively, the resulting azimuths are

$$
\begin{aligned}
& A_{1}=\frac{1}{2}\left(R_{2}-R_{1}\right)-\frac{1}{2}\left(A_{2}-A_{1}\right), \\
& A_{2}=\frac{1}{2}\left(R_{2}-R_{1}\right)+\frac{1}{2}\left(A_{2}-A_{1}\right) .
\end{aligned}
$$

References.

Many excellent treatises on spherical and practical astronomy are available. Among these the most complete are the following: -
"A Manual of Spherical and Practical Astronomy," by William Chauvenet. Philadelphia: J. B. Lippincott \& Co., 2 vols., 8vo, 5th ed., 1887. "A Treatise on Practical Astronomy, as applied to Astronomy and Geodesy," by C. L. Doolittle. New York: John Wiley \& Sons, 8vo, 2d ed., 1888. "Lehrbuch der Sphärischen Astronomie," von F. Brünnow. Berlin: Fred. Dümler, 8vo, 185 r. "Spherical Astronomy," by F. Brünnow. Translated by the author from the second German edition. London : Asher \& Co., 8vo, 8865.

THEORY OF ERRORS.

I. Laws of Error.

The theory of errors is that branch of mathematical science which considers the nature and extent of errors in derived quantities due to errors in the data on which such quantities depend. A law of error is a relation between the magnitude of an error and the probability of its occurrence. The simplest case of a law of error is that in which all possible errors (in the system of errors) are equally likely to occur. An example of such a case is had in the errors of tabular logarithms, natural trigonometric functions, etc.; all errors from zero to a half unit in the last tabular place being equally likely to occur.

When quantities subject to errors following simple laws are combined in any manner, the law of error of the quantity resulting from the combination is in general more complex than that of either component.
Let ε denote the magnitude of any error in a system of errors whose law of error is defined by $\phi(\xi)$. Then if ϵ vary continuously the probability of its occurrence will be expressed by $\phi(\epsilon) d \epsilon$. If ϵ vary continuously between equal positive and negative limits whose magnitude is a, the sum of all the probabilities $\phi(\epsilon) d \epsilon$ must be unity, or

$$
\int_{-a}^{+a} \phi(\epsilon) d \epsilon=\mathrm{r}
$$

For the case of tabular logarithms, etc., alluded to above, $\phi(\boldsymbol{\epsilon})=c$, a constant whose value is $\mathrm{I} /(2 a)=\mathrm{I}$, since $a=0.5$.
For the case of a logarithm interpolated between two consecutive tabular values, by the formula $v=v_{1}+\left(v_{2}-v_{1}\right) t=v_{1}(\mathrm{r}-t)+v_{2} t$, where v_{1} and v_{2} are the tabular values, and t the interval between v_{1} and the derived value $v, \phi(\epsilon)$ has the following remarkable forms when the extra decimals (practically the first of them) in $\left(v_{2}-v_{1}\right) t$ are retained $:$ -

$$
\begin{align*}
\phi(\epsilon) & =\frac{\frac{1}{2}+\epsilon}{(\mathrm{I}-t) t} \text { for values of } \epsilon \text { between }-\frac{1}{2} \text { and }-\left(\frac{1}{2}-t\right), \\
& =\frac{\mathrm{r}}{\mathrm{I}-t} \text { for values of } \epsilon \text { between }-\left(\frac{1}{2}-t\right) \text { and }+\left(\frac{1}{2}-t\right), \tag{I}\\
& =\frac{\frac{1}{2}-\epsilon}{(\mathrm{I}-t) t} \text { for values of } \epsilon \text { between }+\left(\frac{1}{2}-t\right) \text { and }+\frac{1}{2} .
\end{align*}
$$

It thus appears that $\phi(\epsilon)$ in this case is represented by the upper base and the two sides of a trapezoid.

When, as is usually the practice, the quantity $\left(v_{2}-v_{1}\right) t$ is rounded to the nearest unit of the last tabular place, $\phi(\epsilon)$ becomes more complex, but is still represented by a series of straight lines. It is worthy of remark that the latter species of interpolated value is considerably less precise than the former, wherein an additional figure beyond the last tabular place is retained.

When an infinite number of infinitesimal errors, each subject to the law of constant probability and each as likely to be positive as negative, are combined by addition, the law of the resultant error is of remarkable simplicity and generality. It is expressed by

$$
\begin{equation*}
\phi(\epsilon)=\frac{h}{\sqrt{\pi}} e^{-k^{2} e^{2}} \tag{2}
\end{equation*}
$$

where e is the Napierian base, $\pi=3.14 \mathrm{I} 59+$, and h is a constant dependent on the relative magnitude of the errors in the system. This is the law of error of least squares. It is the law followed more or less closely by most species of observational errors. Its general use is justified by experience rather than by mathematical deduction.

a. Probable, mean, and average errors.

For the purposes of comparison of different systems of errors following the same law, three different terms are in use. These are the probable error,* or that error in the system which is as likely to be exceeded as not; the mean error, or that error which is the square root of the mean of the squares of all errors in the system; and the average error, which is the average, regardless of sign, of all errors in the system. Denote these errors by $\epsilon_{p}, \epsilon_{m}, \epsilon_{a}$, respectively. Then in all systems in which positive and negative errors of equal magnitude are equally likely to occur, and in which the limits of error are denoted by $-a$ and $+a$, the analytical definitions of the probable, mean, and average errors are : -

$$
\begin{align*}
& \int_{-a}^{-\epsilon_{p}} \phi(\epsilon) d \epsilon=\int_{-\epsilon_{p}}^{o} \phi(\epsilon) d \epsilon=\int_{0}^{+} \phi(\epsilon) d \epsilon=\int_{-\epsilon_{p}}^{+a} \phi(\epsilon) d \epsilon=\frac{1}{4}, \tag{3}\\
& \epsilon_{m}^{2}=\int_{-a}^{+a} \phi(\epsilon) \epsilon^{2} d \epsilon, \quad \epsilon_{a}=\int_{-a}^{+a} \phi(\epsilon) \epsilon d \epsilon .
\end{align*}
$$

[^12]b. Probable, mean, average, and maximum actual errors of interpolated logarithms, trigonometric functions, etc.

When values of logarithms, etc., are interpolated from numerical tables by means of first differences, as explained above, the probable and other errors depend on the magnitude of the interpolating factor. Thus, the interpolated value is

$$
v=v_{1}+\left(v_{2}-v_{1}\right) t
$$

where v_{1} and v_{2} are consecutive tabular values and t is the interpolating factor.
For the species of interpolated value wherein the quantity $\left(v_{2}-v_{1}\right) t$ is not rounded to the nearest unit of the last tabular place (or wherein the next figure beyond that place is retained) the maximum possible actual error is 0.5 of a unit of the last tabular place, and formulas (1) and (3) show that the probable, mean, and average errors are given by the following expressions :-

$$
\begin{array}{rlr}
\epsilon_{p} & =\frac{1}{4}(\mathrm{I}-t) & \text { for } t \text { between } \circ \text { and } \frac{1}{3} \\
& =\frac{1}{2}-\frac{1}{2} \sqrt{2 t(\mathrm{I}-t)} & \text { for } t \text { between } \frac{1}{3} \text { and } \frac{2}{3}, \\
& =\frac{1}{4} t & \text { for } t \text { between } \frac{3}{3} \text { and } \mathrm{I} . \\
\epsilon_{m} & =\left\{\frac{\mathrm{I}-(\mathrm{I}-2 t)^{4}}{96(\mathrm{I}-t) t}\right\}^{\frac{1}{2}} . \\
\epsilon_{a} & =\frac{\mathrm{r}-(\mathrm{I}-2 t)^{8}}{24(\mathrm{I}-t) t} & \text { for } t \text { between } o \text { and } \frac{1}{2} \\
& =\frac{1-(2 t-\mathrm{r})^{8}}{24(\mathrm{I}-t) t} & \text { for } t \text { between } \frac{1}{2} \text { and } \mathrm{I} .
\end{array}
$$

It thus appears that the probable error of an interpolated value of the species under consideration decreases from 0.25 to 0.15 of a unit of the last tabular place as t increases from o to 0.5 . Hence such interpolated values are more precise than tabular values.
For the species of interpolated values ordinarily used, wherein $\left(v_{2}-v_{1}\right) t$ is rounded to the nearest unit of the last tabular place, the probable, mean, and average errors are greater than the corresponding errors for tabular values. The laws of error for thls ordinary species of interpolated value are similar to but in general more complex than those defined by equations (I). It must suffice here to give the practical results which flow from these laws for special values of the interpolating factor $t .^{*}$ The following table gives the probable, mean, average,
 will be observed that $t=\mathrm{r}$ corresponds to a tabular value.

[^13]Characteristic Errors of Interpolated Logarithms, etc.

Interpolating factor t	Probable error ϵ_{p}	Mean error $\boldsymbol{\epsilon}_{\boldsymbol{m}}$	Average error $\boldsymbol{\epsilon}_{\boldsymbol{a}}$	$\underset{\text { error }}{\text { Maximual }}$
1	0.250	0.289	0.250	$\frac{1}{2}$
2	. 292	. 408	. 333	1
$\frac{1}{3}$. 256	. 347	. 287	$\stackrel{8}{8}$
1	.276	.382	. 313	1
$\frac{1}{6}$. 268	. 370	. 303	20
t	. 277	.385	.315	1
$\frac{1}{4}$. 274	. 380	.311	13
$\frac{1}{1}$.279	. 3^{89}	. 318	1
t	. 278	. 386	. 316	17
$\frac{18}{10}$.281	. 392	. 320	1

2. The Method of Least Squares.

a. General statement of method.

When the errors to which observed quantities are subject follow the law expressed by

$$
\phi(\epsilon)=\frac{h}{\sqrt{\pi}} e^{-h^{2} \varepsilon^{2}},
$$

a unique method results for the computation of the most probable values of the observed quantities and of quantities dependent on the observed quantities. The method requires that the sum of the weighted squares of the corrections to the observed quantities shall be a minimum,* subject to whatever theoretical conditions the corrections must satisfy. These conditions are of two kinds, namely, those expressing relations between the corrections only, and those expressing relations between the corrections and other unknown quantities whose values are disposable in determining the minimum. A familiar illustration of the first class of conditions is presented by the case of a triangle each of whose angles is measured, the condition being that the sum of the corrections is a constant. An equally familiar illustration of the second class of conditions is found in the case where the sum and difference of two unknown quantities are separately observed; in this case the two unknowns are to be found along with the corrections.

Mathematically, the general problem of least squares may be stated in two

[^14]equations. Thus, let x, y, z, \ldots be the observed quantities with weights p, q, r, \ldots Let the corrections to the observed quantities be denoted by $\Delta x, \Delta y$, $\Delta z, \ldots$; so that the corrected quantities are $x+\Delta x, y+\Delta y, z+\Delta z, \ldots$ Let the disposable quantities whose values are to be determined along with the corrections be denoted by ξ, η, ζ, \ldots Then, the theoretical conditions which must be satisfied by $x+\Delta x, y+\Delta y, z+\Delta z, \ldots$ and by ξ, η, ζ, \ldots may be symbolized by
\[

$$
\begin{equation*}
F_{n}(\xi, \eta, \zeta, \ldots x+\Delta x, y+\Delta y, z+\Delta z, \ldots)=0 \tag{4}
\end{equation*}
$$

\]

Subject to the conditions specified by the n equations (4), we must also have

$$
\begin{align*}
p(\Delta x)^{2}+q(\Delta y)^{2}+r(\Delta z)^{2}+\ldots & =\text { a minimum } \tag{5}\\
& =u, \text { say }
\end{align*}
$$

Equations (4) and (5) contain the solution of every problem of adjustment by the method of least squares. Two examples may suffice to illustrate their use.

First, take the case of the observed angles of a triangle alluded to above. Calling the observed angles x, y, z, we have
or

$$
\begin{gathered}
x+\Delta x+y+\Delta y+z+\Delta z=180^{\circ}+\text { spherical excess } \\
\begin{aligned}
\Delta x+\Delta y+\Delta z & =180^{\circ}+\text { spherical excess }-(x+y+z) \\
& =c, \text { say. }
\end{aligned}
\end{gathered}
$$

This is the only condition of the form (4). The problem is completely stated, then, in the two equations

$$
\begin{aligned}
\Delta x+\Delta y+\Delta z & =c \\
p(\Delta x)^{2}+q(\Delta y)^{2}+r(\Delta z)^{2} & =\text { a min. }=u
\end{aligned}
$$

To solve this problem the simplest mode of procedure is to eliminate one of the corrections by means of the first equation and then make u a minimum. Thus, eliminating Δz, there results

$$
u=p(\Delta x)^{2}+q(\Delta y)^{2}+r(c-\Delta x-\Delta y)^{2}
$$

The conditions for a minimum of u are : -

$$
\begin{aligned}
& \frac{\partial u}{\partial \Delta x}=(p+r) \Delta x+r \Delta y-r c=0 \\
& \frac{\partial u}{\partial \Delta y}=r \Delta x+(q+r) \Delta y-r c=0
\end{aligned}
$$

and these give, in connection with the value $\Delta z=c-\Delta x-\Delta y$,

$$
\Delta x=\frac{Q}{p}, \quad \Delta y=\frac{Q}{q}, \quad \Delta z=\frac{Q}{r}
$$

where

$$
Q=\frac{c}{\frac{1}{p}+\frac{1}{q}+\frac{\mathbf{x}}{r}}
$$

When the weights are equal, or when $p=q=r$, the corrections are -

$$
\Delta x=\Delta y=\Delta z=\frac{1}{3} c
$$

Secondly, take the case, also alluded to above, of the observed sum and the observed difference of two numbers. Denote the numbers by ξ and η, the latter being the smaller. Let the observed values of the sum $(\xi+\eta)$ be denoted by $x_{1}, x_{2}, \ldots x_{m}$ and their weights $p_{1}, p_{2}, \ldots p_{m}$ respectively. Likewise, call the observed values of the difference $(\xi-\eta), y_{1}, y_{2}, \ldots y_{n}$, and their weights $q_{1}, q_{2} \ldots q_{n}$ respectively. Then there will be $m+n$ equations of the type (4), namely: 一

$$
\begin{align*}
& \xi+\eta-\left(x_{1}+\Delta x_{1}\right)=0 \\
& \xi+\eta-\left(x_{2}+\Delta x_{2}\right)=0 \\
& \dot{\xi}+\eta-\left(x_{m}+\Delta x_{m}\right)=0 \tag{a}\\
& \xi-\eta-\left(y_{1}+\Delta y_{1}\right)=0 \\
& \xi-\eta-\left(y_{2}+\Delta y_{2}\right)=0 \\
& \cdot \cdot \cdot \cdot \cdot \\
& \xi-\eta-\left(y_{n}+\Delta y_{n}\right)=0
\end{align*}
$$

and the minimum equation is

$$
u=p_{1}\left(\Delta x_{1}\right)^{2}+p_{2}\left(\Delta x_{2}\right)^{2}+\ldots+q_{1}\left(\Delta y_{1}\right)^{2}+q_{2}\left(\Delta y_{2}\right)^{2}+\ldots=\text { a min. }(\mathrm{b})
$$

The equations of group (a) give

$$
\begin{align*}
& \Delta x_{1}=\xi+\eta-x_{1} \\
& \Delta x_{2}=\xi+\eta-x_{2} \\
& \cdots \tag{c}\\
& \Delta y_{1}=\xi-\eta-y_{1} \\
& \Delta y_{2}=\xi-\eta-y_{2},
\end{align*}
$$

and these values in (b) give

$$
\begin{equation*}
u=p_{1}\left(\xi+\eta-x_{1}\right)^{2}+\ldots+q_{1}\left(\xi-\eta-y_{1}\right)^{2}+\ldots \tag{d}
\end{equation*}
$$

Thus it appears that all conditions will be satisfied if ξ and η are so determined as to make u in (d) a minimum. Hence, using square brackets to denote summation of like quantities, the values of ξ and η must be found from

$$
\begin{align*}
& \frac{\partial u}{\partial \xi}=[p+q] \xi+[p-q] \eta-[p x+q y]=0 \tag{e}\\
& \frac{\partial u}{\partial \eta}=[p-q] \xi+[p+q] \eta-[p x-q y]=0
\end{align*}
$$

Equations (e) give ξ and η, and these substituted in (c) will give the corrections to the observed quantities.

b. Relation of probable, mean, and average errors.

The introduction of the law of error (2) in equations (3) furnishes the following relations, when it is assumed that the limits of possible error are $-\infty$ and $+\infty$:

$$
\begin{equation*}
\epsilon_{p}=0.6745 \epsilon_{m}=0.8453 \epsilon_{a} . \tag{6}
\end{equation*}
$$

c. Case of a single unknown quantity.

The case of a single unknown quantity whose observed values are of equal or unequal weight is comprised in the following formulas: -

$$
\begin{aligned}
x_{1}, x_{2}, \ldots x_{m} & =\text { observed values of unknown quantity, } \\
p_{1}, p_{2}, \ldots p_{m} & =\text { the weights of } x_{1}, x_{2}, \ldots \\
v_{1}, v_{2}, \ldots v_{m} & =\text { most probable corrections to } x_{1}, x_{2}, \ldots \\
x & =\text { most probable value of the unknown quantity }, \\
m & =\text { the number of independent observations. }
\end{aligned}
$$

Then the conditional equations (4) are

$$
\begin{aligned}
& x-x_{1}=v_{1} \\
& x-x_{2}=v_{2} \\
& \cdot \cdot \cdot \cdot \\
& x-x_{m}=v_{m}
\end{aligned}
$$

the minimum equation (5) is

$$
p_{1} v_{1}^{2}+p_{2} v_{2}^{2}+\ldots=\left[p v^{2}\right]=\left[p\left(x-x_{i}\right)^{2}\right]=\text { a min. }
$$

where $i=\mathrm{x}, 2, \ldots m$, and

$$
x=\frac{p_{1} x_{1}+p_{2} x_{2}+\ldots p_{m} x_{m}}{p_{1}+p_{2}+\cdots p_{m}}=\frac{[p x]}{[p]} .
$$

When the weights are equal, $p_{1}=p_{2}=\ldots=p_{m}$, and

$$
x=\frac{[x]}{m}
$$

or the arithmetic mean of the observed values.

$$
\begin{aligned}
\text { Weight of } x & =[p] \text { when the } p \text { 's are unequal, } \\
& =m \text { when the } p \text { 's are equal. }
\end{aligned}
$$

Mean error of an observed value of weight unity $=\sqrt{\frac{[p v v]}{m-\mathbf{I}}}$ for unequal weights,

$$
=\sqrt{\frac{[v v]}{m-1}} \text { for equal weights. }
$$

Mean error of an observed value of weight $p=\sqrt{\frac{[p v v]}{(m-r) p}}$ for unequal weights.

$$
\text { Mean error of } \begin{aligned}
x & =\sqrt{\frac{[p v v]}{(m-1)[p]}} \text { for unequal weights, } \\
& =\sqrt{\frac{[v v]}{m(m-1)}} \text { for equal weights. }
\end{aligned}
$$

The corresponding probable errors are found by multiplying these values by 0.6745 . See equation (6).

A formula for the average error sometimes useful is

$$
\begin{aligned}
\text { Average error } & =\frac{[p v]}{\sqrt{(m-1)[p]}} \text { for unequal weights. } \\
& =\frac{[v]}{\sqrt{m(m-1)}} \text { for equal weights. }
\end{aligned}
$$

In these the residuals v are all taken with the same sign. A sufficient approximation in many cases of equal weights is $\frac{[v]}{m}$; but the above formulas dependent on the squares of the residuals are in general more precise.

An important check on the computation of x is $[p \tau]=o ; i . e$., the sum of the residuals v, each multiplied by its weight, is zero if the computation is correct.

d. Case of observed function of several unknown quantities $\xi, \eta, \zeta \ldots$

A case of frequent occurrence, and one which includes the preceding case, is that in which a function of several unknown quantities is observed. Thus, for example, the observed time of passage of a star across the middle thread of a transit instrument is a function of the azimuth and collimation of the transit instrument and the error of the timepiece used. In cases of this kind the conditional equations of the type (4) assume the form

$$
F(\xi, \eta, \zeta \ldots x+\Delta x)=0
$$

that is, each of them contains but one observed quantity x along with several disposable (disposable in satisfying the minimum equation) quantities $\xi, \eta, \zeta \ldots$

The process of solution in this case consists in eliminating the corrections $\Delta x_{1}, \Delta x_{2}, \ldots$ from the above conditional equations, substituting their values in the minimum equation (5), and then placing the differential coefficients of u with respect to $\xi, \eta, \zeta \ldots$ separately equal to zero. There will thus result as many independent equations as there are unknown quantities of the class in which ξ, η, $\zeta \ldots$ fall, the remaining unknown quantities $\Delta x_{1}, \Delta x_{2}, \ldots$, or the corrections to the observed values, are then found from the conditional equations.

In many applications it happens that the conditional equations

$$
F(\xi, \eta, \zeta, \ldots x+\Delta x)=0
$$

are not of the linear form. But they may be rendered linear in the following manner. First, eliminate the quantities $x+\Delta x$ from the conditional equations. The result of this elimination may be written

$$
f(\xi, \eta, \zeta \ldots)-x-\Delta x=0
$$

Secondly, put

$$
\begin{aligned}
& \xi=\xi_{0}+\Delta \xi, \\
& \eta=\eta_{0}+\Delta \eta,
\end{aligned}
$$

where $\xi_{0}, \eta_{0}, \ldots$ are approximate values of ξ, η, \ldots, found in any manner, and $\Delta \xi, \Delta \eta, \ldots$ are corrections thereto. Then supposing the approximate values
$\xi_{0}, \eta_{0}, \ldots$ so close that we may neglect the squares, products, and higher powers of $\Delta \xi, \Delta \eta, \ldots$, Taylor's series gives

$$
f\left(\xi_{0}, \eta_{0}, \xi_{0}, \ldots\right)+\frac{\partial f}{\partial \xi} \Delta \xi+\frac{\partial f}{\partial \eta} \Delta \eta+\frac{\partial f}{\partial \zeta} \Delta \zeta+. \quad-x-\Delta x=0
$$

which is linear with respect to the corrections $\Delta \xi, \Delta \eta, \ldots$ For brevity, and for the sake of conformity with notation generally used, put

$$
\begin{gathered}
n=x-f\left(\xi_{0}, \eta_{0}, \zeta_{0} \ldots\right) \\
v=\Delta x, \\
a=\frac{\partial f}{\partial \xi}, \quad b=\frac{\partial f}{\partial \eta}, \quad c=\frac{\partial f}{\partial \xi}, \ldots \\
x=\Delta \xi, \quad y=\Delta \eta, \quad z=\Delta \zeta, \ldots
\end{gathered}
$$

Then the conditional equations will assume the form

$$
a x+b y+c z+\ldots-n=v ;
$$

and if they are m in number they may be written individually thus : -

$$
\begin{align*}
& a_{1} x+b_{1} y+c_{1} z+\ldots-n_{1}=v_{1}, \\
& a_{2}+b_{2}+c_{2}+\ldots-n_{2}=v_{2}, \tag{a}\\
& \cdots \\
& a_{m}+b_{m}+c_{m}+\ldots-n_{m}=v_{m} .
\end{align*}
$$

The minimum equation (5) becomes

$$
u=\left[p v^{2}\right]=\left[p(a x+b y+c z+\ldots-n)^{2}\right] ;
$$

so that placing $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}, \ldots$ separately equal to zero will give as many independent equations as there are values of x, y, z, \ldots The resulting equations are in the usual (Gaussian) notation of least squares:-

$$
\begin{align*}
& {[p a a] x+[p a b] y+[p a c] z+\ldots-[p a n]=0,} \\
& {[p a b]+[p b b]+[p b c]+\ldots-[p b n]=0,} \tag{b}\\
& {[p a c]+[p b c]+[p c c]+\ldots-[p c n]=0,}
\end{align*}
$$

The equations (a) are sometimes called observation-equations. The absolute term n is called the observed quantity. It is always equal to the observed quantity minus the computed quantity $f\left(\xi_{0}, \eta_{0}, \zeta \ldots\right)$, which latter is assumed to be free from errors of observation. The term v is called the residual. It is sometimes, though quite erroneously, replaced by zero in the equations (a).
The equations (b) are called normal equations. They are usually formed directly from equations (a) by the following process: Multiply each equation by the coefficient of x and by the weight p of the y in the same equation, and add the products. The result is the first equation of (b), or the normal equation in x_{0} The normal equations in y, z, \ldots are found in a similar manner.

A noteworthy peculiarity of the normal equations is their symmetry. Hence in forming equations (b) from (a) it is not essential to compute all the coefficients of x, y, z, \ldots except in the first equation.

Checks on the computed values of the numerical terins in the normal equations are found thus : Add the coefficients a, b, c, \ldots of x, y, z, \ldots in (a) and put

$$
\begin{aligned}
& a_{1}+b_{1}+c_{1}+\ldots=s_{1}, \\
& a_{2}+b_{2}+c_{2}+\ldots=s_{2},
\end{aligned}
$$

Multiply each of these, first, by its $p a$; secondly, by its $p b$, etc., and then add the products. The results are

$$
\begin{aligned}
& {[p a a]+[p a b]+[p a c]+\ldots=[p a s]} \\
& {[p a b]+[p b b]+[p b c]+\ldots=[p b s]}
\end{aligned}
$$

These will check the coefficients of x, y, z, \ldots in (b). To check the absolute terms, multiply each of the above sums by its $n p$, and add the products. The result is

$$
[p a n]+[p b n]+[p c n]+\ldots=[p s n]
$$

which must be satisfied if the absolute terms are correct.
Checks on the computation of x, y, z, \ldots from (b) and of v_{1}, v_{2}, \ldots from (a) are furnished by

$$
[p a v]=0, \quad[p b v]=0, \quad[p c v]=0, \quad \cdots
$$

To get the unknowns x, y, z, and their weights simultaneously, the best method of procedure is, in general, the following : For brevity replace the absolute terms in (b) by A, B, C, \ldots respectively. Then the solution of (b) will be expressed by

$$
\begin{align*}
& x=a_{1} A+\beta_{1} B+\gamma_{1} C+\ldots \\
& y=a_{2}+\beta_{2}+\gamma_{2}+\ldots \tag{c}\\
& z=a_{3}+\beta_{3}+\gamma_{3}+\ldots,
\end{align*}
$$

in which $\alpha_{1}, \beta_{1}, \gamma_{1}, \ldots$ are numerical quantities; and

$$
\begin{align*}
& \text { weight of } x=\frac{\mathrm{r}}{a_{1}}, \\
& \text { weight of } y=\frac{\mathrm{r}}{\beta_{2}} \tag{d}\\
& \text { weight of } z=\frac{\mathrm{r}}{\gamma_{3}}
\end{align*}
$$

To compute mean (and hence probable) errors the following formulas apply:$m=$ the number of observed quantities n
$=$ number of equations of condition,
$\mu=$ number of the quantities x, y, z, \ldots
$\epsilon_{m}=$ mean error of an observed quantity (n) of weight unity,
$\epsilon_{p}=$ corresponding probable error $=0.6745 \epsilon_{m}$.

$$
\begin{aligned}
\overline{\epsilon_{m}} & =\sqrt{\frac{[p v v]}{m-\mu}} \text { for unequal weights }, \\
& =\sqrt{\frac{[v v]}{m-\mu}} \text { for equal weights, }
\end{aligned}
$$

Mean error of any observed quantity (n) of weight $p=\frac{\epsilon_{m}}{\sqrt{p}}$,
Mean error of $x=\epsilon_{m} \sqrt{\alpha_{1}}$,
Mean error of $y=\epsilon_{m} \sqrt{\bar{\beta}_{2}}$,
Mean error of $z=\epsilon_{m} \sqrt{\gamma_{3}}$,
where $a_{1}, \beta_{2}, \gamma_{3}, \ldots$ are defined by equations (c) and (d) above.

e. Case of functions of several observed quantities x, y, z, \ldots

This case is that in which the conditional equations (4) contain no disposable quantities ξ, η, ζ, \ldots It is the opposite extreme to that represented by the case of the preceding section.* It finds its most important and extensive application in the adjustment of triangulation, wherein the observed quantities are the angles and bases of the triangulation, and the conditions (4) arise from the geometrical relations which the observed quantities plus their respective corrections mus ${ }^{+}$ satisfy.

An outline of the general method of procedure in this case is the following :-
The first step consists in stating the conditional equations and in reducing them to the linear form if they are not originally so. The form in which they present themselves is (4) with $\underline{\xi}, \eta, \zeta, \ldots$ suppressed, or

$$
F\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, x_{3}+\Delta x_{3}, \ldots\right)=\mathrm{o}
$$

wherein x, y, z, \ldots of (4) are replaced by $x_{1}, x_{2}, x_{3} \ldots$ for the purpose of simplicity in the sequel. If this equation is not linear, Taylor's series gives

$$
F\left(x_{1}, x_{2}, x_{3} \ldots\right)+\frac{\partial F}{\partial x_{1}} \Delta x_{1}+\frac{\partial F}{\partial x_{2}} \Delta x_{2}=\ldots=0
$$

since the method supposes that the squares, products, etc., of $\Delta x_{1}, \Delta x_{2} \ldots$ may be neglected. The last equation is then linear with respect to the corrections $\Delta x_{1}, \Delta x_{2} \ldots$ which it is desired to find.

For brevity put

$$
F\left(x_{1}, x_{2}, x_{3} \ldots\right)=q_{1}, \text { a known quantity, }
$$

$$
\frac{\partial F}{\partial x_{1}}=a_{1}, \quad \frac{\partial F}{\partial x_{2}}=a_{2}, \quad \frac{\partial F}{\partial x_{8}}=a_{3}, \ldots
$$

Then the conditional equations will be of the type

$$
a_{1} \Delta x_{1}+a_{2} \Delta x_{2}+a_{3} \Delta x_{3}+\ldots+q_{1}=0
$$

[^15]There will be as many equations of this type as there are independent relations which the quantities $x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, \ldots$ must satisfy. Suppose there are k such relations, and let the differential coefficients $\partial F / \partial x_{1}, \partial F / \partial x_{2}, \ldots$ for the second relation be denoted by $b_{1}, b_{2}, b_{3}, \ldots$; for the third relation by $c_{1}, c_{2}, c_{8}, \ldots$, etc. Then all of the conditional equations may be written thus:

the number of these equations being k.
Call the weights of the observed quantities $x_{1}, x_{2}, \ldots p_{1}, p_{2}, \ldots$ Then, subject to the conditions (a) we must have (in accordance with (5))
a minimum.

$$
\begin{equation*}
u=p_{1}\left(\Delta x_{1}\right)^{2}+p_{2}\left(\Delta x_{2}\right)^{2}+\ldots=\left[p(\Delta x)^{2}\right] \tag{b}
\end{equation*}
$$

Equations (a) and (b) contain the solution of all problems falling under the present case. Obviously, the number of conditions (a) must be less than the number of observed quantities x, or less than the number of Δx 's in (b); in other words, if m denote the number of observed quantities, $m>k$, for if $m \overline{<} k$ the minimum equation (b) has no meaning.

The question presented by (a) and (b) is one of elimination only. Two methods, the one direct and the other indirect, are available. Thus, by the direct method one finds from (a) as many Δx 's as there are equations (a), or k such values, and substitutes them in (b). The remaining ($m-k$) values of Δx in (b) may then be treated as independent and the differential coefficients of u with respect to each of them placed equal to zero. Thus all of the corrections Δx become known.

By the indirect process, one multiplies the first of equations (a) by a factor Q_{1}, the second by Q_{2}, the third by Q_{3}, \ldots and subtracts the differential (with respect to the Δx 's) of the sum of these products from half the differential of (b). The result of these operations is

$$
\begin{aligned}
\frac{1}{2} d u & =\left\{p_{1} \Delta x_{1}-\left(a_{1} Q_{1}+b_{1} Q_{2}+c_{1} Q_{3}+\ldots\right)\right\} d \Delta x_{1} \\
& +\left\{p_{2} \Delta x_{2}-\left(a_{2} Q_{1}+b_{2} Q_{2}+c_{2} Q_{3}+\ldots\right)\right\} d \Delta x_{2} \\
& +\cdots \\
& +\left\{p_{m} \Delta x_{m}-\left(a_{m} Q_{1}+b_{m} Q_{2}+c_{m} Q_{3}+\ldots\right)\right\} d \Delta x_{m}
\end{aligned}
$$

Now we may choose the factors $Q_{1}, Q_{2}, \ldots Q_{k}$ in such a way as to make k of the coefficients of the differentials in this equation disappear; and after thus eliminating k of these differentials we are at liberty to place the coefficients of the remaining ($m-k$) differentials equal to zero. Thus all conditions are satisfied by making

$$
\begin{align*}
& a_{1} Q_{1}+b_{1} Q_{2}+c_{1} Q_{3}+\ldots-p_{1} \Delta x_{1}=0 \\
& a_{2}+b_{2}+c_{2}+\ldots-p_{2} \Delta x_{2}=0 \tag{c}\\
& a_{m}+b_{m}+c_{m}+\ldots-p_{m} \Delta x_{m}=0
\end{align*}
$$

and the values of the corrections will be given by these equations when the factors Q_{1}, Q_{2}, \ldots are known. To find the latter it suffices to substitute the values
of $\Delta x, \Delta x_{2}, \ldots$ from (c) in (a), whereby there will result k equations containing the $Q_{1}, Q_{2} \ldots Q_{k}$ alone as unknowns. The result of this substitution is

$$
\begin{align*}
& {\left[\frac{a a}{p}\right] Q_{1}+\left[\frac{a b}{p}\right] Q_{2}+\left[\frac{a c}{p}\right] Q_{3}+\ldots+q_{1}=0} \\
& {\left[\frac{a b}{p}\right]+\left[\frac{b b}{p}\right]+\left[\frac{b c}{p}\right]+\ldots+q_{2}=0} \tag{d}\\
& {\left[\frac{a c}{p}\right]+\left[\frac{b c}{p}\right]+\left[\frac{c c}{p}\right]+\ldots+q_{3}=0}
\end{align*}
$$

These equations (d) are derived directly from (c) in the following manner: multiply the first of (c) by $\frac{a_{1}}{p_{1}}$, the second by $\frac{a_{2}}{p_{2}}$, etc., sum the products, and compare the sum with the first of (a). The first of (d) is then evident ; the others are obtained in a similar way.

The mean error of an observed quantity of weight unity is in this case given by the formula

$$
\epsilon_{m}=\sqrt{\frac{\left[p(\Delta x)^{2}\right]}{k}}
$$

where k is the number of conditions (a); and the mean error of any observed value of weight p is

$$
\frac{\epsilon_{m}}{\sqrt{\ddot{p}}}
$$

f. Computation of mean and probable errors of functions of observed quantities.

Let V denote any function of one or more independently observed quantities x, y, z, \ldots; that is, let

$$
V=f(x, y, z \ldots)
$$

A question of frequent occurrence with respect to such functions is, What is the mean* error of V in terms of the mean errors of x, y, z, \ldots ? The answer to this question given by the method of least squares assumes that the actual errors (whatever they may be) of x, y, z, \ldots are so small that the actual error of V is a linear function of the errors of x, y, z. In other words, if $e_{x}, e_{y}, e_{z}, \ldots$ denote the actual errors of x, y, z, \ldots, and ΔV denote the corresponding actual error of V, the method assumes that

$$
\begin{equation*}
\Delta V=\frac{\partial V}{\partial x} e_{x}+\frac{\partial V}{\partial y} e_{y}+\frac{\partial V}{\partial z} e_{x}+\ldots \tag{a}
\end{equation*}
$$

wherein the squares, products, etc., of $e_{x}, e_{y}, e_{z}, \ldots$ are omitted.
This condition being fulfilled, let ϵ denote the mean error of V, and $\epsilon_{x}, \epsilon_{y}, \epsilon_{z} \ldots$ denote those of x, y, z, \ldots respectively. Then the law of error of least squares requires that

$$
\begin{equation*}
\epsilon^{2}=\left(\frac{\partial V}{\partial x}\right)^{2} \epsilon_{x}{ }^{2}+\left(\frac{\partial V}{\partial y}\right)^{2} \epsilon_{y}{ }^{2}+\left(\frac{\partial V}{\partial z}\right)^{2} \epsilon_{z}{ }^{2}+\ldots \tag{b}
\end{equation*}
$$

[^16]This equation includes all cases. Its analogy with (a) should be noted, since the step from (a) to (b) is clear when the correct form of (a) is known. Mistakes in the application of (b) are most likely to arise from a lack of knowledge of the independently observed quantities x, y, z, \ldots or from a lack of knowledge of the true form of (a). Hence,* in deriving probable errors of functions of observed quantities attention should be given first to the construction of the expression for the actual error (a).

A few examples may serve to illustrate the use of (a) and (b).
(I.) Suppose

Then

$$
V=f(x, y, z, \ldots)=a(x-y)+b(y+z)+c(z-\mathrm{I})
$$

$$
\begin{aligned}
\frac{\partial V}{\partial x} & =a, \quad \frac{\partial V}{\partial y}=b-a, \quad \frac{\partial V}{\partial z}=b+c \\
\Delta V & =a e_{x}+(b-a) e_{y}+(b+c) e_{y,} \\
\epsilon^{2} & =a^{2} \epsilon_{x}^{2}+(b-a)^{2} \epsilon_{y}{ }^{2}+(b+c)^{2} \varepsilon_{z}^{2} .
\end{aligned}
$$

(2.) Suppose

$$
V=f(x, y, z \ldots)=\frac{a}{x}+b \frac{y}{z^{2}}
$$

Then

$$
\begin{gathered}
\frac{\partial V}{\partial x}=-\frac{a}{x^{2}} \quad \frac{\partial V}{\partial y}=\frac{b}{z^{2}} \quad \frac{\partial V}{\partial z}=-\frac{2 b y}{z^{8}}, \\
\Delta V=-\frac{a}{x^{2}} e_{x}+\frac{b}{z^{2}} e_{y}-\frac{2 b y}{z^{3}} e_{z,} \\
\epsilon^{2}=\frac{a^{2}}{x^{4} \epsilon_{x}^{2}+\frac{b^{2}}{z^{2}} \epsilon_{y}^{2}+\frac{4 b^{2} y^{2}}{z^{6}} \epsilon_{z}^{2} .}
\end{gathered}
$$

(3.) Suppose

Then

$$
\frac{\partial V}{\partial x}=\frac{a \mu}{x}, \quad \frac{\partial V}{\partial y}=b \cos y, \quad \frac{\partial V}{\partial z}=\frac{c \mu}{\sin z \cos z},
$$

and

$$
\epsilon^{2}=\left(\frac{a \mu}{x}\right)^{2} \epsilon_{x}^{2}+(b \cos y)^{2} \epsilon_{y}^{2}+\left(\frac{2 c \mu}{\sin 2 z}\right)^{2} \epsilon_{x}^{2} .
$$

(4.) Suppose the case of a single triangle all of whose angles are observed. What is the mean error, rst, of an observed angle ; 2 d , of the correction to an observed angle ; and 3d, of the corrected or adjusted angle ?
Let x, y, z denote the observed angles, p, q, r their weights, and $\Delta x, \Delta y, \Delta z$ the corresponding corrections.

Then, as shown on p . lxxxvii,

$$
\begin{gathered}
\Delta x+\Delta y+\Delta z=c=180^{\circ}+\text { sph. excess }-(x+y+z) \\
=\text { error of closure of triangle, } \\
Q=\frac{c}{\frac{1}{p}+\frac{1}{q}+\frac{1}{r}}, \\
\Delta x=\frac{Q}{p}, \quad \Delta y=\frac{Q}{q}, \quad \Delta z=\frac{Q}{r}
\end{gathered}
$$

* As remarked by Sir George Airy in his Theory of Errors.
$\dagger \mu=$ modulus of common logarithms.

For brevity, put

Then

$$
g=180^{\circ}+\text { spherical excess, } \quad h=\frac{1}{\frac{1}{p}+\frac{1}{q}+\frac{1}{r}} .
$$

$$
\begin{aligned}
Q & =\frac{h}{(g-x-y-z)}=h c, \\
\Delta x & =\frac{h}{p}(g-x-y-z), \\
x+\Delta x & =\frac{h}{p}(g-x-y-z)+x,
\end{aligned}
$$

with similar expressions for the other two angles.
Now by the formula on p. xcv the square of the mean error of an observed angle of weight unity is (since there is but one condition to which $\Delta x, \Delta y, \Delta z$ are subject),

$$
p(\Delta x)^{2}+q(\Delta y)^{2}+r(\Delta z)^{2}=\frac{Q^{2}}{h}=h c^{2} .
$$

Hence, the squares of the mean errors of the observed angles x, y, z, their weights being p, q, r respectively, are

$$
\frac{h c^{2}}{p}, \quad \frac{h c^{2}}{q}, \quad \frac{h c^{2}}{r}
$$

respectively.
To get the mean error of a correction, Δx for example, formula (a) gives

$$
\Delta V=\Delta(\Delta x)=-\frac{h}{\bar{p}}\left(e_{x}+e_{y}+e_{z}\right),
$$

and the corresponding expressions for the actual errors of Δy and Δz are found from this by replacing p by q and r respectively. Thus by (b), observing that the mean errors of x, y, z are given above, there result

Square of mean error of $\Delta x=(h c / p)^{2}$,

$$
\begin{array}{llll}
\text { " } & \text { " } & \text { " } & \Delta y=(h c / q)^{2} \\
" & " & " & \Delta z=(h c / r)^{2}
\end{array}
$$

Likewise, the formula for the actual error of $x+\Delta x$ is

$$
\Delta V=\Delta(x+\Delta x)=\left(\mathrm{I}-\frac{h}{p}\right) e_{x}-\frac{h}{\bar{p}} e_{y}-\frac{h}{\bar{p}} e_{x}
$$

and the corresponding expressions for the actual errors of $y+\Delta y$ and $z+\Delta z$ are found by interchange of q and r with p. Thus the squares of the mean errors of the adjusted angles are:-

$$
\begin{array}{ll}
\text { for }(x+\Delta x), & \frac{h c^{2}}{p}\left(\mathrm{x}-\frac{h}{p}\right), \\
\text { for }(y+\Delta y), & \frac{h c^{2}}{q}\left(\mathrm{x}-\frac{h}{q}\right), \\
\text { for }(z+\Delta z), & \frac{h c^{2}}{r}\left(\mathrm{r}-\frac{h}{r}\right) .
\end{array}
$$

xcviii
In case the weights are equal, or in case $p=q=r, h=\frac{1}{3}$, and there result, -

Square of mean error of observed angle $\quad=\frac{1}{3} c^{2}$,

" " " " adjusted angle = 号 c^{a},
where c is the error of closure of the triangle; so that in this case of equal weights the three mean errors are to one another as $\frac{1}{3} \sqrt{3}, \frac{1}{3}$, and $\frac{1}{3} \sqrt{2}$.

References.

The literature of the theory of errors, especially as exemplified by the method of least squares, is very extensive. Amongst the best treatises the following are worthy of special mention : Method of Least Squares, Appendix to vol. ii. of Chauvenet's "Spherical and Practical Astronomy." Philadelphia: J. B. Lippincott \& Co., 8vo, 5th ed., 1887. "A Treatise on the Adjustment of Observations, with Applications to Geodetic Work and Other Measures of Precision," by T. W. Wright. New York: D. Van Nostrand, 8vo, 1884. "On the Algebraical and Numerical Theory of Errors of Observation and on the Combination of Observations," by Sir George Biddle Airy. London: Macmillan \& Co., I2mo, 2d ed., 1875. "Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate, mit Anwendungen auf die Geodäsie und die Theorie der Messinstrumente," von F. R. Helmert. Leipzig: B. G. Teubner, 8vo, 1872.

EXPLANATION OF SOURCE AND USE OF THE TABLES.

TABLES I and 2 are copies of tables issued by the Office of Standard Weights and Measures of the United States, edition of November, $\mathbf{1} 89 \mathbf{1}$.

Table 3 is derived from standard tables giving such data. The arrangement is that given in "Des Ingenieurs Taschenbuch, herausgegeben von dem Verein 'Hütte'"* (1rth edition, 1877). The numbers have been compared with those given in the latter work, and also with those in Barlow's "Tables." The logarithms have been checked by comparison with Vega's 7-place tables.

Table 4 is abridged from a similar table in the Taschenbuch just referred to.
Tables 5 and 6 are copies of standard forms for such table. They have been checked by comparison with standard higher-place tables. The mode of using these tables will be evident from the following examples :-
(土.) To find the logarithm of any number, as 0.06944 , we look in Table 5 in the column headed \mathbf{N} for the first two significant figures of the number, which are in this case 69. In the same horizontal line with 69 we now look for the number in the column headed with the next figure of the given number, which is in the present case 4 . We thus find $.84^{14}$ for the mantissa of the logarithm of the number 694. To get the increase due to the additional figure 4 , we look in the same horizontal line under Prop. Parts in the colunnn headed 4 and find the number 2, which is the amount in units of the fourth place to be added to the part of the mantissa previously found. Thus the mantissa of \log (0.06944) is 8416. The characteristic for the logarithm in question is $-2=8-10$. Hence $\log (0.06944)=8.8416-10$.
(2.) To find the number corresponding to any logarithm, as $8.8416-\mathrm{Io}$, we look in Table 6 in the column headed L for the first two figures of the mantissa, which are in this case 84 . In the same horizontal line with 84 we now look for the number in the column headed by the next figure of the mantissa, which is in this case 1 . We thus find 6394 for the number corresponding to the mantissa 84 ro. To get the increase due to the additional figure 6 , we look in the same horizontal line under Prop. Parts in the column headed 6 and find 10 , which is the amount in units of the fourth place to be added to the number previously found. Thus the significant figures of the number are 6944 , and since the characteristic of the logarithm is $8-10=-2$, the required number is 0.06944 .

[^17]Tables 7 and 8 are taken from "Smithsonian Meteorological Tables" (the first volume of this series). Their mode of use will be apparent from the following example: Required the sine and tangent for $28^{\circ} \mathrm{I} 7^{\prime}$.

Table 9 is a copy of a similar table published in "Professional Papers, Corps Engineers," U. S. A., No. 12. It has been checked by comparison with other tables in general use. This table is useful in computing latitudes and departures in traverse surveys wherein the bearings of the lines are observed to the nearest quarter of a degree, and in other work where multiples of sines and cosines are required. Thus, if L denote the length and B the bearing from the meridian of any line, the latitude and departure of the line are given by

$$
L \cos B \quad \text { and } L \sin B
$$

respectively; the " latitude" being the distance approximately between the parallels of latitude at the ends of the line, and the "departure" being the distance approximately between the meridians at the ends of the line. As an example, let it be required to compute the latitude and departure for $L=4837$, in any unit, and $B=36^{\circ} 15^{\prime}$. The computation runs thus : -

Tables Io and II give the logarithms of the principal radii of curvature of the earth's spheroid. They were computed by Mr. B. C. Washington, Jr., and carefully checked by differences. They depend on the elements of Clarke's spheroid of 1866 . The use of these tables is sufficiently explained on p. xlv-xlix.

Table 12 gives logarithms of radii of curvature of the earth's spheroid in sections inclined to the meridian sections. It is abridged to 5 places from a 6-place table published in the " Report of the U. S. Coast and Geodetic Survey for $1876 . "$ Its use is explained on pp. lxi-lxiv.

Tables 13 and 14 give logarithms of factors needed to compute the spheroidal excess of triangles on the earth's spheroid. No. 13 is constructed for the Eng. lish foot as unit, and No. 14 for the metre. These tables were computed by Mr.

Charles H. Kummell. Their use is explained on p. lviii. The following example will illustrate their use :-

Tables 15 and 16 give logarithms of factors for computing differences of latitude, longitude, and azimuth in secondary triangulation whose lines are 12 miles (20 kilometres) or less in length. These tables were computed by Mr. Charles H. Kummell. Table 15 gives factors for the English foot as unit, and Table 16 for the metre as unit. The use of these tables is illustrated by a numerical example given on pp. lx and lxi. For lines not exceeding the length mentioned, the tables will give differences of latitude and longitude to the nearest hundredth of a second of arc, using 5 -place logarithms of the lengths of the lines.

Table I7 gives lengths of terrestrial arcs of meridians corresponding to latitude intervals of $10^{\prime \prime}, 20^{\prime \prime}, \ldots 60^{\prime \prime}$, and $10^{\prime}, 20^{\prime}, \ldots 60^{\prime}$, or lengths corresponding to arcs less than I°. The unit of length is the English foot. The table was computed by Mr. B. C. Washington, Jr.

The length corresponding to any latitude interval is the distance along the meridian between parallels whose latitudes are less and greater respectively than the given latitude by half the interval. Thus, for example, the length corresponding to the interval 30^{\prime} and latitude 37° ($\mathbf{r} 82047.3$ feet) is the distance along the meridian from latitude $36^{\circ} 45^{\prime}$ to latitude $37^{\circ} 15^{\prime}$.
By interpolation, we may get from this table the meridional distance corresponding to any interval. The following example illustrates this use : Required the distance between latitude $41^{\circ} \quad 28^{\prime} 17 . .^{\prime \prime} 8$ and latitude $41^{\circ} 39^{\prime} \quad 53 . .^{\prime \prime} 4$. The difference of these latitudes is $1 \mathrm{I}^{\prime} 35 . .^{\prime \prime} 6$, and their mean is $41^{\circ} 34^{\prime} 05 .^{\prime \prime} 6$. The computation runs thus :-

10^{\prime}	Latitude 41°.		Tabular difference.	
	60724.60 feet		10.70 feet	
I^{\prime}	6072.46	"	1.07	"
$30^{\prime \prime}$	3036.23	،	. 54	"
$5{ }^{\prime \prime}$	506.04	"	. 09	"
0."6	60.72	"	. 01	"
${ }_{\frac{34}{}{ }_{60} 09} \times 12.41$	7.05	"	sum, 12.41	"
Dista	70407.10			

When the degree of precision required is as great as that of the example just
given, it will be more convenient to use formulas (2) on p. xlvi. Thus, in this example, -

$\Delta \phi=695 .{ }^{\prime \prime} 6$	$\begin{gathered} \log . \\ 2.8423596 \end{gathered}$
$\phi=4 \mathrm{I}^{\circ} 34^{\prime} 05 . \mathrm{C}$, ρ_{m} (Table 10)	7.3196820
cons't	4.6855749
Length $=70407.10$ feet	4.8476165

Table 18 gives lengths of terrestrial arcs of parallels corresponding to longitude intervals of $10^{\prime \prime}, 20^{\prime \prime}, \ldots 60^{\prime \prime}$, and $10^{\prime}, 20^{\prime}, \ldots 60^{\prime}$, or lengths corresponding to arcs less than 1°. The unit is the English foot. This table was computed by Mr. B. C. Washington, Jr.

The method of using this table is similar to that applicable to Table 17 explained above. For the computation of long arcs it will in general be less laborious to use the formulas (r) on p . xlix than to resort to interpolation from Table 18.

Tables 19-24 give the rectangular co-ordinates for the projection of maps, in accordance with the polyconic system explained on pp . liii-lvi, for the following scales respectively : -

These tables were computed by Mr. B. C. Washington, Jr.
The use of these tables and their application in the construction of maps may be best explained by an example. Suppose it is required to draw meridians and parallels for a map of an area of I^{0} extent in longitude, lying between the parallels of 34° and 35°. Let the scale of the map be one mile to the inch, or $\mathrm{I} / 63360$, and let the meridians and parallels be 10^{\prime} apart respectively. Draw on the projection paper an indefinite straight line $A B$, Fig. 4, to represent the middle meridian of the map. Take any convenient point, as C, on this line for the latitude 34°, and lay off from this point the meridional distances $C D, C E, C F, \ldots C I$, given in the second column of Table 22, p. iI4.* Through the points D, E, F, . . . I, thus found, draw indefinite straight lines perpendicular to $A B$. By means of these lines and the tabular co-ordinates, points on the developed parallels and meridians are readily found. Thus, for example, the abscissas for points ten minutes apart on the parallel $34^{\circ} 20^{\prime}$ are $9.53,19.06$, and 28.59 inches. These distances are to be laid off on $N N^{\prime}$ in both directions from $A B$. At the points $L, M, N, L^{\prime}, M^{\prime}, N^{\prime}$, so determined, erect perpendiculars to $N N^{\prime}$ equal in length, respectively, to the ordinates corresponding to the longitude intervals

[^18]$10^{\prime}, 20^{\prime}, 30^{\prime}$. The curved line joining the extremities of these perpendiculars is the parallel required. It may be drawn by means of a flexible ruler. The other parallels are constructed in the same manner. They are all concave towards the north or south according as the map shows a portion of the northern or southern hemisphere. The meridians are drawn in a similar manner through the points (e.g., P, Q, M, R, S, T, U in Fig. 4) having the same longitude relative to the middle meridian. All meridians are concave towards the middle meridian.

A test of the graphical work which should always be applied is the approximation to equality of corresponding diagonals in the various quadrilaterals formed. Thus in Fig. 4, $V X$ should be equal to $W Y, C N$ to $C N^{\prime}, E V$ to $E W$, etc.*

Fig. 4.
Tables 25-29 give areas of quadrilaterals, bounded by meridians and parallels, of the earth's surface. They are taken from "Bulletin 50, U. S. Geological Survey." The unit of length used is the English mile, and the areas are thus given in square miles. The method of using these tables is obvious.

Table 30 gives data for the computation of heights, from barometric measures, in accordance with the formula of Babinet. \dagger This table is taken from the "Smithsonian Meteorological Tables" (the first volume of this series). The manner of using it is explained in connection with the table.

[^19]Table 31 gives the mean astronomical refraction in terms of the apparent altitude of a star or other object outside the earth's atmosphere. It is taken from Vega's 7 -place table of logarithms. Its use will be evident from the following example:-

Tables 32 and 33 facilitate the interconversion of arc and time. They are taken from the "Smithsonian Meteorological Tables" (the first volume of this series). The following examples illustrate their use : -
(r.) To convert $68^{\circ} 29^{\prime} 48 .^{\prime \prime} 8$ into time we have from Table 32 -

$$
\begin{array}{rlrl}
68^{\circ} & =4^{\mathrm{h}} & 32^{\mathrm{m}} 00^{\mathrm{s}} \\
29^{\prime} & = & 1 & 56 \\
4^{4 \prime} & = & & 3.20 \\
0 . .^{\prime \prime} & = & & .05 \\
\text { Equivalent in time } & =4 & 33 & 59.25
\end{array}
$$

(2.) To con ert $5^{\mathrm{h}} 43^{\mathrm{m}} 28.8$ into arc we have from Table $33-$

Tables 34 and 35 facilitate the interconversion of mean solar and sidereal time intervals. They are taken from Vega's 7-place table of logarithms. The mode of using them is explained in the tables themselves.

Tables 36 and 37 give the lengths of degrees of terrestrial arcs of meridians and parallels expressed in metres,* statute miles (English), and geographic miles (distance corresponding to I^{\prime} on the earth's equator). These tables are taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 38 facilitates the interconversion of statute (English) miles and nautical miles. The nautical mile used is that defined by the U. S. Coast and Geodetic Survey, namely : the length of a minute of arc of a great circle of the sphere whose surface equals that of the earth (Clarke's spheroid of 1866). For formula for radius of such sphere see p. lii. This table is taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 39 gives the English and metric equivalents of other standards of length still in use or obsolescent. It is taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 40 gives values of the acceleration (g) of gravity, $\log g, \log (1 / 2 g), \log \sqrt{2 g}$,

[^20]and $\left(g / \pi^{2}\right)$ or the length of a seconds pendulum, for intervals of 5° of geographical latitude. It was computed by the editor, and is based on the formula for g given by Professor William Harkness in his memoir "On the Solar Parallax and its Related Constants." *

Table 41 gives the linear expansions of the principal metals. It was compiled by the editor from various sources. The values given for the expansion per degree Centigrade have been rounded (with one exception) to the nearest unit in the millionths place, or to the nearest micron, since different specimens of the same metal vary more or less in the ten-millionths place.

Table 42 gives the fractional changes in numbers corresponding to changes in the $4^{\text {th }}, 5$ th,. .7 th place of their logarithms. These fractions are often convenient in showing the approximate error in a number due to a given error in its logarithm, or the converse. Thus, for example, referring to the remark in a foot-note under explanation of Tables 36 and 37 above, the error in the logarithm of Clarke's ratio of the yard to the metre is about 4 units in the sixth place of decimals; the Table 42 shows, then, that the metric equivalents in Tables 36 and 37 are erroneous by about $1 / 100$ oooth part.

[^21]
GEOGRAPHICAL TABLES

FOR CONVERTING U. S. WEICHTS AND MEASURES.* CUSTOMARY TO METRIC.

The only authorized material standard of customary length is the Troughton scale belonging to this office, whose length at $59^{\circ} .62$ Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.

The only anthorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy.

The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the Uuited States is equal to the British pound Avoirdupois.

The British galion $=4.54346$ litres. The British bushel $=36.3477$ litres.
The length of the nautical mile given above and adopted by the U.S. Coast and Geodetic Survey many years ago is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

* Issued by U. S. Office of Standard Weights and Measures, and republished here by permission of Superintendent of Coast and Geodetic Survey.

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to y of the latter metal. From one of these a certain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889 , to the different governments and are called National prototype standards. Those apportioned to the United States were received in r8go and are in the keeping of this office.

The metric system was legalized in the United States in 1866.
The International Standard Metre is derived from the Metre des Archives, and its length is defined by the distance between two Iines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.
Smithsonian Tables.

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}	$\sqrt[8]{n}$	log. n
1	1000.000	1	1	1.0000	1.0000	0.00000
2	500.000	4	8	1.4142	1.2599	0.30103
3	333.333	9	27	1.7321	1. 4422	0.47712
4	250.000	16	64	2.0000	1.5874	0.60206
5	200.000	25	125	2.2361	1.7100	0.69897
6	166.667	36	216	2.4495	1.8171	0.77815
7	142.857	49	343	2.6458	1.9129	0.84510
8	125.000	64	512	2.8284	2.0000	0.90309
9	III.III	8 I	729	3.0000	2.0801	0.95424
10	100.000	100	1000	3.1623	2.1544	1.00000
11	90.9091	121	1331	3.3166	2.2240	1.04139
12	83.3333	144	1728	3.4641	2.2894	1.07918
13	76.9231	169	2197	3.6056	2.3513	I.11394
14	71.4286	196	2744	3.7417	2.4101	1.14613
15	66.6667	225	3375	3.8730	2.4662	1.17609
16	62.5000	256	4096	4.0000	2.5198	1.20412
17	58.8235	289	4913	4.1231	2.5713	1.23045
18	55.5556	324	5832	4.2426	2.6207	1.25527
19	52.6316	361	6859	4.3589	2.6684	1.27875
20	50.0000	400	8000	4-4721	2.7144	1.30103
21	47.6190	441	9261	4.5826	2.7589	1.32222
22	45.4545	484	10648	4.6904	2.8020	1.34242
23	43.4783	529	12167	4.7958	2.8439	1.36173
24	41.6667	576	13^{824}	4.8990	2.8845	I.3802
25	40.0000	625	15625	5.0000	2.9240	1. 39794
26	38.46 I 5	676	17576	5.0990	2.9625	1.41497
27	37.0370	729	19683	5.1962	3.0000	I. 43136
28	35.7143	784	21952	5.2915	3.0366	r. 44716
29	34.4828	841	24389	5.3852	3.0723	1.46240
30	33.3333	900	27000	$5 \cdot 4772$	3.1072	
31	32.2581	961	29791	$5 \cdot 5678$	3.1414	1.49136
32	31.2500	1024	32768	5.6569	3.1748	1.50515
33	30.3030	1089	35937	5.7446	3.2075	1.5185I
34	29.4118	II 56	39304	5.8310	3.2396	I.53148
	28.5714			5.9161	3.2711	
36	27.7778	1296	46656	6.0000	3.3019	1.545630
37	27.0270	1369	50653	6.0828	3.3322	1.56820
38	26.3158	1444	54872	6.1644	3.3620	1.57978
39	25.6410	I 521	59319	6.2450	$3 \cdot 3912$	1.59106
40	25.0000	1600	64000	6.3246	3.4200	1.60206
41	24.3902	1681	68921	6.4031	$3 \cdot 4482$	1. 61278
42	23.8095	1764	74088	6.4807	3.4760	1.62325
43	23.2558	1849	79507	6.5574	3.5034	1.63347
44	22.7273	1936	85184	6.6332	3.5303	1. 64345
45	22.2222	2025	91125	6.7082	3.5569	
46	21.7391	2116	97336	6.7823	3.5830	1.66276
47	21.2766	2209	103823	6.8557	3.6088	1.67210
48	20.8333	2304	110592	6.9282	3.6342	1.68124
49	20.4082	2401	117649	7.0000	3.6593	1.69020
50	20.0000			7.0711	3.6840	
51	19.6078	2601	132651	7.1414	3.7084	1.70757
52 53	19.2308	2704	140608	7.2111	3.7325	1.71600
53	18.8679	2809	148877	7.2801	3.7563	1.72428
54	18.5185	2916	157464	7.3485	3.7798	1.73239

Smithsonian Tables.

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SOUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	$1000 \cdot \frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt[8]{n}$	\log. n
55	18.1818	3025	166375	7.4162	3.8030	1.74036
56	17.857	3136	175616	7.4833	3.8259	1.74819
57	17.5439	3249	185193	$7 \cdot 5498$	3.8485	1.75587
58	17.2414	3364	195112	7.6158	3.8709	1.76343
59	16.9492	348 I	205379	7.6811	3.8930	1.77085
60	16.6667	3600	216000	7.7460	3.9149	1.77815
61	16.3934	3721	22698 I	7.8102	3.9365	1.78533
62	16.1290	3844	238328	7.8740	3.9579	1.79239
63	15.8730	3969	250047	7.9373	3.9791	1.79934
64	15.625°	4096	262144	8.0000	4.0000	1.80618
65	15.3846	4225	274625	8.0623	4.0207	1.81291
66	15.1515	4356	287496	8.1240	4.0412	1.81954
67	14.9254	4489	300763	8.1854	4.0615	1.82607
68	14.7059	4624	314432	8.2462	4.0817	
69	14.4928	4761	328509	8.3066	4.1016	1.83885
70	14.2857	4900	343000	8.3666	4.1213	1.84510
71	14.0845	5041	35791 1-	8.4261	4.1408	1.85126
72	13.8889	5184	373248	8.4853	4.1602	1.85733
73	13.6986	5329	389017	8.5440	4.1793	1.86332
74	13.5135	5476	405224	8.6023	4.1983	1.86923
75	13.3333	5625	421875	8.6603	4.2172	1:87506
76	13.1579	5776	438976	8.7178	4.2358	1.88081
77	12.9870	5929	456533	8.7750	4.2543	1.88649
78	12.8205	6084	474552	8.8318	4.2727	1.89209
79	12.6582	6241	493039	8.8882	4.2908	1.89763
80	12.5000	6400	512000	8.9443	4.3089	1.90309
81	12.3457	656I	531441	9.0000	4.3267	1.90849
82	12.1951	6724	551368	9.0554	4.3445	1.91381
83	12.0482	6889	571787	9.1104	4.362 I	1.91908
84	11.9048	7056	592704	9.1652	4.3795	1.92428
85	11.7647	7225	614125	9.2195	4.3968	1. 92942
86	11.6279	7396	636056	9.2736	4.4140	1.93450
87	11.4943	7569	658503	9.3274	4.4310	1.93952
88	11.3636	7744	681472	9.3808	$4 \cdot 4480$	1.94448
89	11.2360	7921	704969	9.4340	$4 \cdot 4647$	1.94939
90	11.1111	8100	729000	9.4868	4.4814	1.95424
91	10.9890	8281	753571	9.5394	$4 \cdot 4979$	1.95904
92	10.8696	8464	778688	9.5917	4.5144	1.96379
93	10.7527	8649	804357	9.6437	4.5307	1.96848
94	10.6383	8836	830584	9.6954	$4 \cdot 5468$	1.97313
95	10.5263	9025				
96	10.4167	9216	884736	9.7980	4.5789	1.98227
	10.3093		912673	9.8489	4.5947	1.98677
98	10.2041	9604	941192	9.8995	4.6104	1.99123
99	10.1010	9801	970299	9.9499	4.6261	1.99564
100	10.0000	10000	1000000	10.0000	4.6416	2.00000
101	9.90099	10201	1030301	10.0499	4.6570	2.00432
102	9.80392	10404	1061208	10.0995	4.6723	2.00860
103	9.70874	10609	1092727	10.1489	4.6875	2.01284
104	9.61538	10816	1124864	10.1980	4.7027	2.01703
105	9.52381	11025	1157625	10.2470	4.7177	2.02119
106	9.43396	11236	1191016	10.2956	4.7326	2.02531
	9.34579	11449	1225043	10.3441	4.7475	2.02938
108	9.25926	11664	1259712	10.3923	4.7622	2.03342
109	9.17431	11881	1295029	10.4403	4.7769	2.03743

VALUES OF RECIPROCALS, SOUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}	$\sqrt[3]{n}$	log. 7
110	9.09091	12100	1331000	10.4881	4.7914	2.04139
111	9.00901	12321	1367631	10.5357	4.8059	2.04532
112	8.92857	12544	1404928	10.5830	4.8203	2.04922
113	8.84956	12769	1442897	10.6301	4.8346	2.05308
114	8.77 I93	12996	1481544	10.6771	4.8488	2.05690
115	8.69565	13225	1520875	10.723^{8}	4.8629	2.06070
116	8.62069	13456	1560896	10.7703	4.8770	2.06446
117	8.54701	13689	1601613	10.8167	4.8910	2.06819
118	8.47458	13924	1643032	10.8628	4.9049	2.07188
119	8.40336	14161	1685159	10.9087	4.9187	2.07555
120	8.33333	14400	1728000	10.9545	4.9324	2.07918
121	8.26446	1464 I	1771561	11.0000	4.9461	2.08279
122	8.19672	14884	1815848	11.0454	4.9597	2.08636
123	8.13008	15129	1860867	11.0905	4.9732	2.08991
124	8.06452	15376	1906624	11.1355	4.9866	2.09342
125	8.00000	I 5625	1953125	11.1803	5.0000	2.09691
126	7.93651	I5876	2000376	11.225°	5.0133	2.10037
127	7.87402	16129	2048383	11.2694	5.0265	2.103^{80}
128	7.81250	16384	2097152	11.3137	5.0397	2.10721
129	7.75194	1664 I	2146689	11.3578	5.0528	2.11059
130.	7.69231	16900	2197000	11.4018	5.0658	2.11394
131	7.63359	17161	2248091	II. 4455	5.0788	2.11727
132	7.57576	17424	2299968	11.4891	5.0916	2.12057
133	7.51880	17689	2352637	11.5326	5.1045	2.12385
134	7.46269	17956	2406104	11.575^{8}	5.1172	2.12710
135	7.40741	18225	2460375	11.6190	5.1299	2.13033
136	7.35294	18496	2515456	11.6619	5.1426	2.13354
137	7.29927	18769	2571353	11.7047	5.1551	2.13672
138	7.24638	19044	2628072	11.7473	5.1676	2.I 3988
139	7.19424	19321	2685619	11.7898	5.1801	2.14301
140	7.14286	19600	2744000	11.8322	5.1925	2.14613
141	7.09220	19881	2803221	11.8743	5.2048	2.14922
142	7.04225	20164	2863288	II.9164	5.2171	2.15229
143	6.99301	20449	2924207	11.9583	5.2293	2.15534
144	6.94444	20736	2985984	12.0000	5.2415	2.15836
145	6.89655	21025	3048625	12.0416		
146	6.84932	21316	3112136	12.0830	5.2656	2.16435
147	6.80272 6.75676	21609 21904	3176523 3241792	12.1244	5.2776	2.16732
148	6.75676	21904	3241792	12.1655	5.2896	2.17026
149	6.71141	22201	3307949	12.2066	$5 \cdot 3015$	2.17319
150	6.66667	22500	3375000	12.2474		2.17609
${ }^{1} 51$	6.62252	22801	3442951	12.2882	$5 \cdot 3251$	2.17898
152	6.57893	23104	3511808	12.3288	5.3368	2.18184
${ }^{1} 53$	6.53595	23409	3581577	12.3693	5.3485	2.18469
154	6.49351	23716	3652264	12.4097	$5 \cdot 3601$	2.1875^{2}
155	6.45161			12.4499		
${ }_{1}^{156}$	6.41026	24336	3796416	12.4900	5.3832	2.19312
157	6.36943	24649	3869893	12.5300	$5 \cdot 3947$	2.19590
I 58	6.32911	24964	3944312	12.5698	5.406 I	2.19866
I 59	6.28931	25281	4019679	12.6095	5.4175	2.20140
160		25600	4096000	12.6491	5.4288	
161	6.21118	25921	4173281	12.6886	$5 \cdot 4401$	2.20683
162	6.17284	26244	4251528	12.7279	5.4514	2.20952
163	6.13497	26569	4330747	12.7671	5.4626	2.21219
164	6.09756	26896	4410944	12.8062	$5 \cdot 4737$	2.21484

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	$1000 \cdot \frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt[3]{2}$	log.
165	6.06061	27225	4492125	12.8452	5.4848	2.21748
166	6.02410	27556	4574296	12.884 I	5.4959	2.22011
167	5.98802	27889	4657463	12.9228	5.5069	2.22272
168	5.95238	28224	4741632	12.9665	5.5178	2.22531
169	5.91716	28561	4826809	13.0000	$5 \cdot 5288$	2.22789
170	5.88235	28900	4913000	13.0384	$5 \cdot 5397$	2.23045
171	5.84795	29241	50002 II	13.0767	5.5505	2.23300
172	5.81395	29584	5088448	13.1149	5.5613	2.23553
173	5.78035	29929	5177717	13.1529	$5 \cdot 572 \mathrm{I}$	2.23805
174	$5 \cdot 74713$	30276	5268024	I 3.1909	5.5828	2.24055
175	5.71429	30625	5359375	13.2288	5.5934	2.24304
176	5.68182	30976	5451776	13.2665	5.6041	2.2455 I
177	5.64972	31329	5545233	13.3041	5.6147	2.24797
178	5.61798	31684	5639752	13.3417	5.6252	2.25042
179	$5 \cdot 58659$	32041	5735339	${ }^{1} 3.3791$	5.6357	2.25285
180	5.55556	32400	5832000	13.4164	5.6462	2.25527
181	5.52486	32761	5929741	I 3.4536	5.6567	2.25768
182	5.49451	33124	6028568	13.4907	5.667 I	2.26007
183	$5 \cdot 46448$	33489	6 I 28487	13.5277	5.6774	2.26245
184	5.43478	33856	6229504	I3.5647	5.6877	2.26482
185	5.40541	34225	6331625	13.6015	5.6980	2.26717
186	5.37634	34596	6434856	13.6382	5.7083	2.2695 I
187	$5 \cdot 34759$	34969	6539203	13.6748	5.7185	2.27184
188	$5 \cdot 31915$	35344	6644672	13.7113	5.7287	2.27416
189	$5 \cdot 29101$	35721	6751269	13.7477	5.7388	2.27646
190	5.26316	36100	6859000	13.7840	5.7489	2.27875
191	5.23560	3648 I	6967871	13.8203	5.7590	2.28103
192	5.20833	36864	7077888	13.8564	5.7690	2.28330
193	5.18135	37249	7189057	13.8924	5.7790	2.28556
194	5.15464	37636	7301384	13.9284	5.7890	2.28780
195	5.12821	38025		13.9642	5.7989	2.29003
196	5.10204	38416	7529536	14.0000	5.8088	2.29226
197	5.07614	38809	7645373	r4.0357	5.8186	2.29447
198	5.05051	39204	7762392	14.0712	5.8285	2.29667
199	5.02513	39601	7880599	14.1067	5.8383	2.29885
200	5.00000	40000	8000000	14.1421	5.8480	2.30103
201	4.97512	40401	8120601	14.1774	5.8578	2.30320
202	4.95050	40804	8242408	14.2127	5.8675	2.30535
203	4.92611	41209	8365427	14.2478	5.877 I	
204	4.90196	41616	8489664	14.2829	5.8868	2.30963
	4.87805		8615125	14.3178	5.8964	
206	4.85437	42436	8741816	14.3527	5.9059	2.31387
207	4.83092	42849	8869743	14.3875	5.9155	2.31597
208	4.80769	43264	8998912	14.4222	5.9250	2.31806
209	4.78469	43681	9129.329	14.4568	5.9345	2.32015
210	4.76190	44100	9261000	14.4914	5.9439	2.32222
211	4.73934	44521	9393931	14.5258	5.9533	2.32428
212	4.71698	44944	9528128	14.5602	5.9627	2.32634
213	4.69484	45369	9663597	14.5945	5.9721	2.32838
214	4.67290	45796	9800344	14.6287	5.9814	2.33041
215	4.65116			14.6629		
216	4.62963	46656	10077696	14.6969	6.0000	2.33445
217	4.60829	47089	10218313	14.7309	6.0092	2.33646
218	4.58716	47524	10360232	14.7648	6.0185	2.33846
219	4.56621	4796 r	10503459	14.7986	6.0277	2.34044

Gmithsonian Tables.

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

22	1000. $\frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}	$\sqrt[8]{n}$	log. n
220	4.54545	48400	10648000	14.8324	6.0368	2.34242
221	4.52489	4884 I	10793861	14.8661	6.0459	2.34439
222	4.50450	49284	10941048	14.8997	6.0550	2.34635
223	4.48431	49729	11089567	14.9332	6.0641	2.34830
224	4.46429	50176	11239424	14.9666	6.0732	2.35025
225	4.44444	50625	11390625	15.0000	6.0822	2.35218
226	4.42478	51076	11543176	15.0333	6.0912	2.35411
227	4.40529	51529	11697083	15.0665	6.1002	2.35603
228	4.38596	51984	11852352	15.0997	6.1091	2.35793
229	4-3668ı	52441	12008989	15.1327	6.i̇I80	2.35984
230	4.34783	52900	12167000	15.1658	6.1269	2.36173
231	4.32900	53361	12326391	15.1987	6.1358	2.36361
232	4.31034	53824	12487168	15.2315	6.1446	2.36549
233	4.29185	54289	12649337	15.2643	6.1534	2.36736
234	4.2735°	54756	12812904	15.2971	6.1622	2.36922
235	4.25532	55225	12977875	15.3297	6.1710	2.37107
236	4.23729	55696	13144256	15.3623	6.1797	2.37291
237	4.21941	56169	13312053	I 5-3948	6.1885	2.37475
238	4.20168	56644	13481272	15.4272	6.1972	2.37658
239	418410	57121	13651919	15.4596	6.2058	2.37840
240	4.16667	57600	13824000	15.4919	6.2145	2.38021
241	4.14938	58081	13997521	15.5242	6.2231	2.38802
242	4.13223	58564	14172488	15.5563	6.2317	2.383^{82}
243	4.11523	59049	14348907	15.5885	6.2403	2.38561
244	4.09836	59536	14526784	15.6205	6.2488	2.38739
245	4.08163	60025	14706125	15.6525	6.2573	2.38917
246	4.06504	60516	14886936	15.6844	. 6.2658	2.39094
247	4.04858	61009	15069223	15.7162	6.2743	2.39270
248	4.03226	61504	15252992	15.7480	6.2828	2.39445
249	4.01606	62001	15438249	15.7797	6.2912	2.39620
250	4.00000	62500	15625000	15.8114	6.2996	2.39794
251	3.98406	63001	15813251	15.8430	6.3080	2.39967
252	3.96825	63504	16003008	15.8745	6.3164	2.40140
253	3.95257	64009	16194277	15.9060	6.3247	2.40312
254	3.93701	64516	16387064	15.9374	6.3330	2.40483
255	3.92I 57	65025	16581375	15.9687	6.3413	
256	3.90625	65536	16777216	16.0000	6.3496	2.40824
257	3.89105	66049	16974593	16.0312	6.3579	2.40993
258	3.87597	66564	17173512	16.0624	6.3661	2.41162
259	3.86100	67081	17373979	16.0935	6.3743	2.41330
260	3.84615	67600	17576000	16.1245	6.3825	2.41497
261	3.83142	68121	17779581	16.1555	6.3907	2.41664
262	3.81679	68644	17984728	16.1864	6.3988	2.41830
263 264	3.80228 3.78788	69169 69696	18191447 18399744	16.2173 16.2481	6.4070 6.4151	2.41996 2.42160
265	3.77358	70225	18609625	16.2788	6.4232	2.42325
266	3.75940	70756	18821096	16.3095	6.4312	2.42488
267	3.74532	71289	19034163	16.3401	6.4393	2.42651
268 269	3.73134 3.71747	71824	19248832 19465109	16.3707 16.4012	6.4473	2.42813
269	3.71747	72361	19465109	16.4012	6.4553	2.42975
270	3:70370	72900	19683000	16.4317	6.4633	2.43136
271	3.69004	73441	19902511	16.4621	6.4713	2.43297
272	3.67647 3.66300	73984	20123648	16.4924	6.4792	2.43457 2.43616
273	3.66300	74529	20346417	16.5227	6.4872	2.43616
274	3.64964	75076	20570824	16.5529	6.4951	2.43775

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON'LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt[3]{n}$	log. n
275	3.63636	75625	20796875	16.583 I	6.5030	2.43933
276	3.62319	76176	21024576	16.6132	6.5108	2.4409 I
277	3.6ioII	76729	21253933	16.6433	6.5187	2.44248
278	$3 \cdot 59712$	77284	21484952	16.6733	6.5265	2.44404
279	$3 \cdot 58423$	77841	21717639	16.7033	6.5343	2.44560
280	3.57143	78400	21952000	16.7332	6.542 I	2.44716
281	3.55872	78961	22188041	16.763 I	6.5499	2.44871
282	3.54610	79524	22425768	16.7929	6.5577	2.45025
283	3.53357	80089	22665187	16.8226	6.5654	2.45179
284	3.52II3	80656	22906304	16.8523	6.5731	$2.4533{ }^{2}$
285	$3 \cdot 50877$	81225	23149125	16.8819	6.5808	2.45484
286	3.49650	81796	23393656	16.9115	6.5885	2.45637
287	3.48432	82369	23639903	16.9411	6.5962	2.45788
288	3.47222	82944	23887872	16.9706	6.6039	2.45939
289	3.46021	8352 I	24137569	17.0000	6.6115	2.46090
290	3.44828	84100	24389000	17.0294	$6.619{ }^{-}$	2.46240
291	3.43643	84681	24642171	17.0587	6.6267	2.46389
292	3.42466	85264	24897088	17.0880	6.6343	2.46538
293	3.41297	85849	25153757	17.1172	6.6419	2.46687
294	$3 \cdot 40136$	86436	25412184	17.1464	6.6494	2.46835
295	3.38983	87025	25672375	17.1756	6.6569	2.46982
296	$3 \cdot 37838$	87616	25934336	17.2047	6.6644	2.47129
297	3.36700	88209	26198073	17.2337	6.67 I9	2.47276
298	$3 \cdot 35570$	88804	26463592	17.2627	6.6794	2.47422
299	3.34448	89401	26730899	17.2916	6.6869	2.47567
300	3.33333	90000	27000000	17.3205	6.6943	2.47712
301	$3 \cdot 32226$	90601	27270901	17.3494	6.7018	2.47857
302	$3 \cdot 31126$	91204	27543608	17.3781	6.7092	2.48001
303	3.30033	91809	27818127	17.4069	6.7166	2.48144
304	3.28947	92416	28094464	17.4356	6.7240	2.48287
305	3.27869	93025	28372625	17.4642	6.7313	2.48430
306	3.26797	93636	28652616	17.4929	6.7387	2.48572
307	3.25733	94249	28934443	17.5214	6.7460	2.48714
308	3.24675	94864	29218112	17.5499	6.7533	2.48855
309	3.23625	9548 I	29503629	17.5784	6.7606	2.48996
310	3.22581	96100	29791000	17.6068	6.7679	2.49136
311	3.21543	96721	30080231	17.6352	6.7752	2.49276
312	3.20513	97344	30371328	17.6635	6.7824	2.494 I 5
313	3.19489 3.18471	97969 98596	30664297	17.6918	6.7897	
314	3.18471	98596	30959144	17.7200	6.7969	2.49693
315	3.17460	99225	31255875	17.7482	6.8041	
316	3.16456	99856	31554496	17.7764	6.8113	2.49969
317	3.15457	100489	31855013	17.8045	6.8185	2.50106
318	3.14465 3.13480	101124	32157432 32461759	17.8326 17.8606	6.8256 6.8328	2.50243
319	3.13480	101761	32461759	17.8606	6.8328	2.50379
320	3.12500	102400	32768000	17.8885	6.8399	2.50515
321	3.11527	103041	33076161	17.9165	6.8470	2.5065 I
322	3.10559	103684	33386248	17.9444	6.8541	2.50786
323	3.09598	104329	33698267	17.9722	6.8612	2.50920
324	3.08642	104976	34012224	18.0000	6.8683	2.51055
325	3.07692			18.0278	6.8753	2.51188
326	3.06748	106276	34645976	18.0555	$\cdot 6.8824$	2.51322
327	3.05810	106929	34965783	18.0831	6.8894	2.51455
328 329	3.04878	107584	35287552 3561289	18.1108	6.8964	2.51587
329	3.03951	108241	35611289	$18.1{ }^{884}$	6.9034	2.51720

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}	$\sqrt[3]{n}$	log. n
330	3.03030	108900	35937000	18.1659	6.9104	2.51851
331	3.02115	109561	36264691	18.1934	6.9174	2.51983
332	3.01205	110224	36594368	18.2209	6.9244	2.52×14
333	3.00300	110889	36926037	18.2483	6.9313	2.52244
334	2.99401	11155°	37259704	18.2757	6.9382	2.52375
335	2.98507	112225	37595375	18.3030	6.9451	2.52504
336	2.97619	112896	37933056	18.3303	6.952 I	2.52634
337	2.96736	113569	38272753	18.3576	6.9589	2.52763
338	2.95858	114244	38614472	18.3848	6.9658	2.52892
339	2.94985	114921	38958219	18.4120	6.9727	2.53020
340	2.94118	115600	39304000	18.4391	6.9795	2.53148
341	2.93255	116281	39651821	18.4662	6.9864	2.53275
342	2.92398	116964	40001688	18.4932	6.9932	2.53403
343	2.91545	117649	40353607	18.5203	7.0000	2.53529
344	2.90698	118336	40707584	18.5472	7.0068	2.53656
345	2.89855	119025	41063625	18.5742	7.0136	2.53782
346	2.89017	119716	41421736	18.6011	7.0203	2.53908
347	2.88184	120409	41781923	18.6279	7.0271	2.54033
348	2.87356	121104	42144192	18.6548	7.0338	2.54158
349	2.86533	121801	42508549	18.6815	7.0406	2.54283
350	2.85714	122500	42875000	18.7083	7.0473	2.54407
351	2.84900	123201	43243551	18.7350	7.0540	2.54531
352	2.84091	123904	43614208	18.7617	7.0607	2.54654
353	2.83286	124609	43986977	18.7883	7.0674	2.54777
354	2.82486	125316	44361864	18.8149	7.0740	2.54900
355	2.81690	126025	44738875	18.8414	7.0807	2.55023
356	2.80899	126736	45118016	18.8680	7.0873	2.55145
357	2.80112	127449	45499293	18.8944	7.0940	2.55267
358	2.79330	128164	45882712	18.9209	7.1006	2.55388
359	2.78552	128881	46268279	18.9473	7.1072	2.55509
360	2.77778	129600	46656000	18.9737	7.11138	2.55630
36 I	2.77008	130321	47045881	19.0000	7.1204	2.55751
362	2.76243	131044	47437928	19.0263	7.1269	2.55871
363	2.75482	131769	47832147	19.0526	7.1335	2.55991
364	2.74725	132496	48228544	19.0788	7.1400	2.56110
365	2.73973	133225	48627125	19.1050	7.1466	2. 56229
366	2.73224	133956	49027896	19.13II	7.1531	2.56348
367	2.72480	134689	49430863	19.1572	7.1596	2.56467
368	2.71739	135424	49836032	19.1833	7.1661	2.56585
369	2.71003	136161	50243409	19.2094	7.1726	2. 56703
370	2.70270	136900	50653000		7.1791	2.56820
371	2.69542	137641	510648 II	19.26 I 4	7.1855	2.56937
372	2.68817	138384	51478848	19.2873	7.1920	2.57054
373	2.68097	139129	51895117	19.3132	7.1984	2.57171
374	2.67380	139876	52313624	19.3391	$7 \cdot 2048$	2.57287
375	2.66667	140625	52734375	19.3649	7.2112	
376 377	2.65957	141376	53157376	19.3907	7.2177	2.57519
377 378	2.65252 2.64550	142129 142884	53582633	19.4165	7.2240	2.57634
378	2.64550	142884	54010152	19.4422	7.2304	2.57749
379	2.63852	143641	54439939	19.4679	7.2368	2.57864
	2.63158	144400		19.4936	7.2432	
381 382	2.62467 2.61780	145161	55306341	19.5192	7.2495	2.58092
382	2.61780	145924	55742968	19.5448	7.255^{8}	2.58206
383	2.61097	146689	56181887	19.5704	7.2622	2.58320
384	2.60417	147456	56623104	19.5959	7.2685	2.58433

table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt{1}$	log. n
385	2.59740	148225	57066625	19.6214	7.2748	2.58546
3^{86}	2.59067	148996	57512456	19.6469	7.2811	2.58659
387	2.58398	149769	57960603	19.6723	7.2874	2.58771
388	2.57732	150544	58411072	19.6977	7.2936	2.58883
389	2.57069	151321	58863869	19.7231	7.2999	2.58995
390	2.56410	152100	59319000	19.7484	7.3061	2.59106
391	2.55754	152881	59776471	19.7737	$7 \cdot 3124$	2.59218
392	2.55102	153664	60236288	19.7990	7.3186	2.59329
393	2.54453	154449	60698457	19.8242	7.3248	2.59439
394	2.53807	155236	6II62984	19.8494	7.3310	2.5955°
395	2.53165	156025	61629875	19.8746	$7 \cdot 3372$	2.59660
396	2.52525	156816	62099136	19.8997	7.3434	2.59770
397	2.51889	157609	62570773	19.9249	7.3496	2.59879
398	2.51256	158404	63044792	19.9499	$7 \cdot 355$	2.59988
399	2.50627	159201	63521199	19.975°	7.3619	2.60097
400	2.50000	160000	64000000	20.0000	$7 \cdot 3681$	2.60206
401	2.49377	160801	64481201	20.0250	7.3742	2.60314
402	2.48756	161604	64964808	20.0499	7.3803	2.60423
403	2.48139	162409	65450827	20.0749	$7 \cdot 3864$	2.60531
404	2.47525	163216	65939264	20.0998	$7 \cdot 3925$	2.60638
405	2.46914	164025	66430125	20.1246	7.3986	2.60746
406	2.46305	164836	66923416	20.1494	7.4047	2.60853
407	2.45700	165649	67419143	20.1742	7.4108	2.60959
408	2.45098	166464	67917312	20.1990	7.4169	2.61066
409	2.44499	167281	68417929	20.2237	$7 \cdot 4229$	2.61172
410	2.43902	168100	68921000	20.2485	7.4290	2.61278
411	2.43309	168921	69426531	20.2731	7.4350	2.61384
412	2.42718	169744	69934528	20.2978	7.4410	2.61490
413	2.42131	170569	70444997	20.3224	7.4470	2.61595
414	2.41546	171396	70957944	20.3470	7.4530	2.61700
415	2.40964 2.40385	172225 173056		20.3715 20.3961	7.4590 7.4650	2.61805 2.61909
416 417	2.40385 2.39808	173056 173889	71991296 72511713	20.3961 20.4206.	7.4650 7.4710	2.61909 2.62014
418	2.39234	174724	7303463^{2}	20.4450	7.4770	2.62118
419	2.38663	175561	73560059	20.4695	$7 \cdot 4829$	2.62221
420	2.38095	176400	74088000	20.4939 20.5183	7.4889	
421	2.37530	177241	74618461	20.5183	7.4948	2.62428
422	2.36967	178084	75151448	20.5426	7.5007	2.62531
423	2.36407	178929	75686967	20.5670	$7 \cdot 5067$	2.62634 2.62737
424	2.35849	179776	76225024	20.5913	$7 \cdot 5126$	2.62737
425	2.35294	180625	76765625	20.6155	7.5185	2.62839
426	2.34742	181476	77308776	20.6398	7.5244	2.62941
427	2.34192	182329	77854483	20.6640	7.5302	2.63043
428	2.33645	183184	78402752	20.6882	$7 \cdot 5361$	2.63144
429	2.33100	184041	78953589	20.7123	$7 \cdot 5420$.	2.63246
430	2.32558	184900	79507000	20.7364	7.5478	2.63347
43 I	2.32019	185761	80062991 80621568	20.7605 20.7846	7.5537 7.5595	2.63448 2.63548
432 433	2.31481 2.30947	186624 18748	80621568 81182737	20.7846 20.8087	7.5595 7.5654	2.63548 2.63649
433 434	2.30947 2.30415	188356	81746504	20.8327	7-5712	2.63749
435	2.29885	189225		20.8567		
436 437	2.29358 2.28833	190096	82881856	20.8806	7.5828 7.5886	2.63949 2.64048
437	2.28833	190969	83453453 84027672	20.9045 20.9284	7.5886	2.64048
438 439	2.28311 2.27790	191844 192721	84027672 84604519	20.9284 20.9523	7.5944 7.6001	2.64147 2.64246

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt[8]{n}$	log. n
440	2.27273	193600	85184000	20.9762	7.6059	2.64345
441	2.26757	194481	85766121	21.0000	7.6117	2.64444
442	2.26244	195364	86350888	21.0238	7.6174	2.64542
443	2.25734	196249	86938307	21.0476	7.6232	2.64640
444	2.25225	1971 3^{6}	87528384	21.0713	7.6289	2.64738
445	2.24719	198025	88121125	21.0950	7.6346	2.64836
446	2.24215	198916	88716536	21.1187	7.6403	2.64933
447	2.23714	199809	89314623	21.1424	7.6460	2.65031
448	2.23214	200704	89915392	21.1660	7.6517	2.65128
449	2.22717	201601	90518849	21.1896	7.6574	2.65225
450	2.22222	202500	91125000	21.2132	7.6631	2.65321
451	2.21730	203401	9173385	21.2368	7.6688	2.65418
452	2.21239	204304	92345408	21.2603	7.6744	2.65514
453	2.20751	205209	92959677	21.2838	7.6801	2.65610
454	2.20264	206116	93576664	21.3073	7.6857	2.65706
455	2.19780	207025	94196375	21.3307	7.6914	2.65801
456	2.19298	207936	94818816	21.3542	7.6970	2.65896
457	2.18818	208849	95443993	21.3776	7.7026	2.65992
458	2.18341	209764	96071912	21.4009	7.7082	2.66087
459	2.17865	210681	96702579	21.4243	$7 \cdot 7138$	2.66181
460	2.17391	211600	97336000	21.4476	7.7194	2.66276
461	2.16920	212521	97972181	21.4709	7.7250	2.66370
462	2.16450	213444	98611128	21.4942	7.7306	2.66464
463	2.15983	214369	99252847	21.5174	7.7362	2.66558
464	2.15517	215296	99897344	21.5407	.7.7418	2.66652
465	2.15054	216225	100544625	21.5639	7.7473	
466	2.14592	217156	101194696	21.5870	7.7529	2.66839
467	2.14133	218089	101847563	21.6102	7.7584	2.66932
468	2.13675	219024	102503232	21.6333	7.7639	2.67025
469	2.13220	219961	103161709	21.6564	7.7695	2.67117
470	2.12766	220900	103823000	21.6795	7.7750	2.67210
471	2.12314	221841	104487111	21.7025	7.7805	2.67302
472	2.11864	222784	105154048	21.7256	7.7860	2.67394
473	2.11416	223729	105823817	21.7486	7.7915	2.67486
474	2.10970	224677	106496424	21.7715	7.7970	2.67578
	2.10526	225625	107171875	21.7945	7.8025	2.67669
476	2.10084	226576	107850176	21.8174	7.8079	2.67761
477 478	2.09644	227529	108531333	21.8403	7.8134	2.67852
478	2.09205	228484	109215352	21.8632	7.8188	2.67943
479	2.08768	229441	109902239	21.8861	7.8243	2.68034
480	2.08333	230400	110592000	21.9089	7.8297	2.68124
481	2.07900	231361	111284641	21.9317	7.8352	2.68215
482	2.07469	232324	111980168	21.9545	7.8406	2.68305
483 484	2.07039 2.06612	233289 234256	112678587	21.9773	7.8460	2.68395
484	2.06612	234256	113379904	22.0000	7.8514	2.68485
485	2.06186		114084125	22.0227	7.8568	
486	2.05761	236196	114791256	22.0454	7.8622	2.68664
487 488	2.05339	237169	115501303	22.0681	7.8676	2.68753
488 489	2.04918	238144	116214272	22.0907	7.8730	2.68842
489	2.04499	239121	116930169	22.1133	7.8784	2.68931
490	2.04082	240100			7.8837	2.69020
491 492	2.03666	241081	118370771	22.1585	7.8891	2.69108
492 493	2.03252 2.02840	242064	119095488	22.1811	7.8944	2.69197
493 494	2.02840	243049 244036	119823157 120553784	22.2036 22.2261	7.8998	2.69285
494	2.02429	244036	120553784	22.2261	7.9051	2.69373

n	$1000 \cdot \frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \boldsymbol{n}$	$\sqrt{8}$	log. n
495	2.02020	245025	121287375	22.2486	7.9105	$2.6946 \mathrm{I}$
496	2.01613	246016	122023936	22.2711	7.9158	2.69548
497	2.01207	247009	122763473	22.2935	7.9211	2.69636
498	2.00803	248004	123505992	22.3159	7.9264	2.69723
499	2.00401	249001	124251499	22.3383	7.9317	2.69810
500	2.00000	250000	125000000	22.3607	7.9370	2.69897
501	1.99601	251001	125751501	22.3830	7.9420	2.69984
502	1.99203	252004	126506008	22.4054	7.9476	2.70070
503	1. 98807	253009	127263527	22.4277	7.9528	2.70157
504	1. 98413	254016	128024064	22.4499	7.9581	2.70243
505	1.98020	255025	128787625	22.4722	7.9634	2.70329
506	1.97628	256036	129554216	22.4944	7.9686	2.70415
507	1.97239	257049	130323843	22.5167	7.9739	2.70501
508	I. 96850	258064	131096512	22.5389	7.9791	2.70586
509	1.96464	259081	131872229	22.5610	7.9843	2.70672
510	1.96078	260100	132651000	22.5832	7.9896	2.70757
511	1.95695	261121	13343283 I	22.6053	7.9948	2.70842
512	1.95312	262144	134217728	22.6274	8.0000	2.70927
513	1.94932	263169	125005697	22.6495	8.0052	2.71012
514	1.94553	264196	155796744	22.6716	8.0104	2.71096
515	1.94175	265225	136590875	22.6936	8.0156	2.71181
516	1.93798	266256	137388096	22.7156	8.0208	2.71265
517	1.93424	267289	${ }^{1} 38188413$	22.7376	8.0260	2.71349
518	1.93050	268324	138991832	22.7596	8.0311	2.71433
519	1.92678	269361	139798359	22.7816	8.0363	2.71517
520	1.92308	270400	140608000	22.8035	8.0415	
521	1.91939	271441	141420761	22.8254	8.0466	2.71684
522	1.91571	272484	142236648	22.8473	8.0517	2.71767
523	1.91205	273529	143055667	22.8692	8.0569	2.71850
524	1.90840	274576	143877824	22.8910	8.0620	2.71933
525	1.90476	275625	144703125	22.9129	8.0671	2.72016
526	1.90114	276676	145531576	22.9347	8.0723	2.72099
527	1. 89753	277729	146363183	22.9565	8.0774	2.72181
528	1. 89394	278784	147197952	22.9783	8.0825	2.72263
529	1.89036	279841	148035889	23.0000	8.0876	2.72346
530	1.88679	280900	148877000	23.0217	8.0927	2.72428
531	1.88324	281961	149721291	23.0434	8.0978	2.72509
532	1.87970	283024	150568768	23.0651	8.1028	2.72591
533	1. 87617	284089	151419437	23.0868	8.1079	2.72673
534	1.87266	285156	152273304	23.1084	8.11 30	2.72754
	1.86916		153130375	23.1301	8.1180	
536	1.86567	287296	153990656	23.1517	8.1231	2.72916
537	1.86220	288369	154854153	23.1733	8.1281	2.72997
538 539	1.85874 1.85529	289444	155720872 156500819	23.1948	8.1332 8.1382	2.73078
539	1.85529	290521	156590819	23.2164	8.1382	2.73159
540	1.85185	291600	157464000	23.2379		2.73239
541	1.84843	292681	I58340421	23.2594	8.1483	2.73320
542	1.84502	293764	159220088	23.2809	8.1533	2.73400
543	1.84162	294849	160103007	23.3024	8.1583	2.73480
544	1.83824	295936	160989184	23.3238	8.1633	2.73560
545	1.83486	297025			8.1683	2.73640
546	1.83150	298116	162771336	23.3666	8.1733	2.73719
547	1.82815	299209	163667323	23.3880	8.1583	2.73799
548	1.82482	300304	164566592	23.4094	8.1833	2.73878
549	1.82149	301401	165469149	23.4307		2.73957

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SOUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt[8]{n}$	log. n
550	1.81818	302500	166375000	23.4521	8.1932	2.74036
551	1.81488	303601	167284151	23.4734	8.1982	2.74115
552	1.81159	304704	168196608	23.4947	8.2031	2.74194
553	1.80832	305809	169112377	23.5160	8.2081	2.74273
554	1.80505	306916	170031464	23.5372	8.2130	2.74351
555	1.80180	308025	170953875	23.5584	8.2180	2.74429
556	1.79856	309136	171879616	23.5797	8.2229	2.74507
557	1.79533	310249	172808693	23.6008	8.2278	2.74586
558	1.7921 I	311364	173741112	23.6220	8.2327	2.74663
559	1.78891	31248 r	174676879	23.6432	8.2377	2.7474 r
560	1.78571	313600	175616000	23.6643	8.2426	2.74819
561	I.78253	314721	176558481	23.6854	8.2475	2.74896
562	1.77936	315844	177504328	23.7065	8.2524	2.74974
563	1.77620	316969	178453547	23.7276	8.2573	2.75051
564	1.77305	318096	179406I44	23.7487	8.2621	2.75128
565	1.76991	319225	180362125	23.7697	8.2670	2.75205
566	1.76678	320356	1813221496	23.7908	8.2719	2.75282
567	1.76367	321489	182284263	23.8118	8.2768	2.75358
568	1.76056	322624	183250432	23.8328	8.2816	2.75435
569	1.75747	323761	184220009	23.8537	8.2865	2.755 II
570	1.75439	324900	185193000	23.8747	8.2913	2.75587
571	1.7513 I	326041	186169411	23.8956	8.2962	2.75664
572	1.74825 1.74520	327184	187149248	23.9165	8.3010	2.75740
573	1.74520	328329	188132517	23.9374	8.3059	2.75815
574	1.74216	329476	189r19224	23.9583	8.3107	2.75891
575	1.73913	330625	190109375	23.9792	8.3155	2.75967
576	1.736 I	331776	191102976	24.0000	8.3203	2.76042
577	1.73310	332929	192100033	24.0208	8.3251	2.76118
578 579	1.73010 1.72712	334084	193100552	24.0416	8.3300	2.76193
579	1.72712	335241	194104539	24.0624	8.3348	2.76268
580	1.72414	336400	195112000	24.0832	8.3396	
581	1.72117	33756 I	196122941	24.1039	8.3443	2.76418
582	1.71821	338724	197137368	24.1247	8.3491	2.76492
58	1.71527	339889	198155287	24.1454	8.3539	2.76567
584	1.71233	341056	199176704	24.166r	8.3587	2.7664 I
585			200201625	24.1868	8.3634	
586	1.70648	343396	201230056	24.2074	8.3682	2.76790
587 588	1.70358	344569	202262003	24.2281	8.3730	2.76864
588 589	1.70068 1.69779	345744 346921	203297472 204336469	24.2487	8.3777 8.387	2.76938
589	1.69779	34692 I	204336469	24.2693	8.3825	2.77012
590	1. 69492	348100	205379000	24.2899	8.3872	2.77085
591	1.69205	34928 I	206425071	24.3105	8.3919	2.77159
592 593	1.68919 1.68634	350464 351649	207474688 20852785	24.3311	8.3967	2.77232
594	1.68350	351849 35286	208527857 209584584	$24 \cdot 3516$ 24.3721	8.4014 8.4061	$\begin{aligned} & 2.77305 \\ & 2.77379 \end{aligned}$
595	1.68067		210644875		8.4108	
596	1.67785	355216	211708736	24.3926 24.4531	8.4108 8.4155	2.77452 2.77525
597	1.67504	356409	212776173	24.4336	8.4202	2.77597
598	1.67224	357604	213847192	24.4540	8.4249	2.77670
599	1.66945	3588 or	214921799	24.4745	8.4296	2.77743
		360000				
601	1.66389	36 I 201	217081801	24.5153	8.4390	2.77887
602	1.66113	362404	218167208	24.5357	8.4437	2.77960
603	1.65837 $\times 6563$	363609	219256227	24.5561	8.4484	2.78032
604	1.65563	364816	220348864	24.5764	8.4530	2.\%SIO4

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt[8]{ } n$	log. n
605	1.65289	366025	221445125	24.5967	8.4577	2.78176
606	1.65017	367236	222545016	24.6171	8.4623	2.78247
607	1. 64745	368449	223648543	24.6374	8.4670	2.78319
608	1. 64474	369664	224755712	24.6577	$8.47{ }^{16}$	2.78390
609	1.64204	37088 I	225866529	24.6779	8.4763	2.78462
610	1.63934	372100	226981000	24.6982	8.4809	2.78533
611	1.63666	373321	228099131	24.7184	8.4856	2.78604
612	1. 63399	374544	229220928	24.7386	8.4902	2.78675.
613	1.63132	375769	230346397	24.7588	8.4948	2.78746
614	1.62866	376996	231475544	24.7790	8.4994	2.788 I 7
615	1.62602	378225	232608375	24.7992	8. 5040	2.78888
616	1.62338	379456	233744896	24.8193	8.5086	2.78958
617	1.62075	380689	234885113	24.8395	8.5132	2.79029
618	1.61812	381924	236029032	24.8596	8.5178	2.79099
619	1.61551	383 I 61	237176659	24.8797	8.5224	2.79169
620	1.61290	384400	238328000	24.8998	-8.5270	2.79239
621	1.61031	385641	239483061	24.9199	8.5316	2.79309
622	1.60772	386884	240641848	24.9399	8.5362	2.79379
623	1.60514	388129	241804367	24.9600	8.5408	2.79449
624	1.60256	389376	242970624	24.9800	8.5453	2.79518
625	1.60000	390625	244140625	25.0000	8.5499	2.79934
626	I. 59744	391876	245314376	25.0200	8.5544	2.79657
627	I. 59490	3931 29	246491883	25.0400	8.5590	2.79727
628	1.59236	394384	247673152	25.0599	8.5635	2.79796
629	I. 58983	395641	248858189	25.0799	8.5681	2.79865
630	1. 58730	396900	250047000	25.0998	8.5726	
631	I. 58479	398161	251239591	25.1197	8.5772	2.80003
632	1.58228	399424	252435968	25.1396	8.5817	2.80072
633	1. 57978	400689	253636137	25.1595	8.5862	2.80140
634	1.57729	401956	254840104	25.1794	8.5907	2.80209
635	1.57480	403225	256047875	25.1992	8.5952	2.80277
636	1. 57233	404496	257259456	25.2190	8. 5997	2.80346
637	1.56986	405769	258474853	25.2389	8.6043	2.80414
638	1.56740	407044	259694072	25.2587	8.6088	2.80482
639	1. 56495	40832 I	260917119	25.2784	8.6132	2.8055°
640	1. 56250	409600	262144000	25.2982	8.6177	2.80618
641	I. 56006	41088 I	263374721	25.3180	8.6222	2.80686
642	I. 55763	412164	264609288	25.3377	8.6267	2.80754
643	1.55521	413449	265847707	25.3574	8.6312	2.80821
644	1. 55280	414736	267089984	25.3772	8.6357	2.80889
645	1. 55039	416025		25.3969		
646	I. 54799	417316 418609	269586136 270840023	25.4165 25.4362	8.6446 8.6490	2.81023 2.8 rogo
647 648	1.54560 1.54321	418609 419904	270840023 272097792	25.4362 25.4558	8.6490 8.6535	2.81090 2.81158
649	1.54083	42 I 201	273359449	25.4755	8.6579	2.81224
650	1. 53846	422500	274625000	$25 \cdot 4951$	8.6624°	2.81291
651	1.53610	42380 I	275894451	25.5147	8.6668	2.81358
652	1. 53374	425104	277167808	25.5343	8.6713	2.81425
653	1.53139	426409	278445077	25.5539	8.6757	2.81491
654	1.52905	427716	279726264	25.5734	8.6801	2.8155^{8}
655	1. 52672			25.5930	8.6845	
656	I. 52439	430336	282300416	25.6125	8.6890	2.81690
657 658	1. 52207	431649	283593393	25.6320	8.6934	2.81757
658 659	1.51976 I. 51745	432964 43428 I	284890312 286191179	$\begin{aligned} & 25.6515 \\ & 25.6710 \end{aligned}$	8.6978 8.7022	2.81823 2.81889
659	1.51745	43428I	28619179	25.6710	8.7022	2.81889

VALUES OF RECIPROCALS, SQUARES, CUBES, SOUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt[8]{n}$	log. n
660	1.51515	435600	287496000	25.6905	8.7066	2.81954
661	1.51286	436921	288804781	25.7099	8.7110	2.82020
662	1.51057	438244	290177528	25.7294	8.7154	2.82086
663	1.50830	439569	291434247	25.7488	8.7198	2.82151
664	1.50602	440896	292754944	25.7682	8.7241	2.82217
665	1. 50376	442225	294079625	25.7876	8.7285	2.82282
666	1.50150	443556	295408296	25.8070	8.7329	2.82347
667	1.49925	444889	296740963	25.8263	8.7373	2.82413
668	1.49701	446224	298077632	25.8457	8.7416	2.82478
669	1.49477	44756I	299418309	25.8650	8.7460	2.82543
670	1.49254	448900	300763000	25.8844	8.7503	2.82607
671	1.49831	450241	302111711	25.9037	8.7547	2.82672
672	1.48810	451584	303464448	25.9230	8.7590	2.82737
673	1.48588	452929	304821217	25.9422	8.7634	2.82802
674	I. 48368	454276	306182024	25.9615	8.7677	2.82866
675	1.48148	455625	307546875	25.9808	8.7721	2.82930
676	1.47929	456976	308915776	26.0000	8.7764	2.82995
677	1.47710	458329	310288733	26.0192	8.7807	2.83059
678	I. 47493	459684	311665752	26.0384	8.7850	2.83123
679	1.47275	461041	313046839	26.0576	8.7893	2.83187
680	1.47059	462400	314432000	26.0768	8.7937	2.83251
681	1.46843	463761	315821241	26.0960	8.7980	2.83315
682	1.46628	465124	317214568	26.1151	8.8023	2.83378
683	1.46413	466489	318611987	26.1343	8.8066	2.83442
684	1.46199	467856	320013504	26.1534	8.8108	2.83506
685	1.45985	469225	321419125	26.1725	8.8152	2.83569
686	1.45773	470596	322828856	26.1916	8.8194	2.83632
687	1.45560	471969	324242703	26.2107	8.8237	2.83696
688	1.45349	473344	325660672	26.2298	8.8280	2.83759
689	1.45138	474721	327082769	26.2488	8.8323	2.83822
690	1. 44928	476100	328509000	26.2679	8.8366	
691	1.44718	47748I	329939371	26.2869	8.8408	2.83948
692	1.44509	478864	331573888	26.3059	8.845 I	2.84011
693 694	1.44300	480249	332812557	26.3249	8.8493	2.84073
694	1.44092	481636	334255384	26.3439	8.8536	2.8456
695	1.43885	483025	335702375	26.3629	8.8578	
696	1.43678	484416	337153536	26.3818	8.8621	$2.8426 \mathrm{I}$
697	I. 43472	485809	338608873	26.4008	8.8663	2.84323
698	1. 43266	487204	340068392	26.4197	8.8706	2.84386
699	I. 43062	488601	341532099	26.4386	8.8748	2.84448
700	1.42857	490000	343000000	26.4575	8.8790	2.84510
701	1.42653	491401	344472101	26.4764	8.8833	2.84572
702	I. 42450	492804	345948408	26.4953	8.8875	2.84634
703	I. 42248	494209	347428927	26.5141	8.8917	2.84696
704	1.42045	495616	348913664	26.5330	8.8959	2.84757
705	1.41844	497025		26.5518	8.9001	
706	1.41643	498436	351895816	26.5707	8.9043	2.84880
707	1.41443	499849	353393243	26.5895	8.9085	2.84942
708 709	1.41243 1.41044	501264	354894912	26.6083	8.9127	2.85003
709	1.41044	502681	356400829	26.6271	8.9169	2.85065
710	1. 40845	504100	357911000	26.6458	8.921 I	2.85126
711	I. 40647	505521	359425431	26.6646	8.9253	2.85187
712	1.40449	506944	360944128	26.6833	8.9295	2.85248
713	1.40252 1.40056	508369	362467097	26.7021	8.9337	2.85309
714	1.40056	509796	363994344	26.7208	8.9378	2.85370

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	\sqrt{n}	log. n
715	1.39860	511225	365525875	26.7395	8.9420	2.85431
716	1.39665	512656	367061696	26.7582	8.9462	2.85491
717	I. 39470	514089	368601813	26.7769	8.9503	2.85552
718	1.39276	515524	370146232	26.7955	8.9545	2.85612
719	1.39082	516961	371694959	26.8142	8.9587	2.85673
720	1.38889	518400	373248000	26.8328	8.9628	2.85733
721	1.38696	519841	374805361	26.8514	8.9670	2.85794
722	I. 38504	521284	376367048	26.8701	8.9711	2.85854
723	1.38313	522729	377933067	26.8887	8.9752	2.85914
724	1.38122	524176	379503424	26.9072	8.9794	2.85974
725	1.3793 I	525625	381078125	26.9258	8.9835	2.86034
726	1.37741	527076	382657176	26.9444	8.9876	2.86094
727	1.37552	528529	384240583	26.9629	8.9918	2.86153
728	1.37363	529984	385828352	26.9815	8.9959	2.86213
729	1.37174	53 I 44 I	387420489	27.0000	9.0000	2.86273
730	1.36986	532900	389017000	27.0185	9.004 I	2.86332
731	I. 36799	53436 I	390617891	27.0370	9.0082	2.86392
732	1.36612	535824	392223168	27.0555	9.0123	2.8645 I
733	I. 36426	537289	393832837	27.0740	9.0164	2.86510
734	1.36240	538756	395446904	27.0924	9.0205	2.86570
735	1.36054	540225	397065375	27.1109	9.0246	2.86629
736	1.35870	541696	398688256	27.1293	9.0287	2.86688
737	I.35685	543169	400315553	27.1477	9.0328	2.86747
738	1.35501	544644	401947272	27.1662	9.0369	2.86806
739	1.35318	546121	403583419	27.1846	9.0410	2.86864
740	1.35135	547600	405224000	27.2029	9.0450	2.86923
741	1.34953	549081	406869021	27.2213	9.0491	2.86982
742	1.34771	550564	408518488	27.2397	9.0532	2.87040
743	1.34590	552049	410172407	27.2580	9.0572	2.87099
744	1.34409	553536	411830784	27.2764	9.0613	2.87157
745	1.34228	555025	413493625	27.2947	9.0654	2.87216
746	I. 34048	556516	415160936	27.313°	9.0694	2.87274
747	I. 33869	558009	416832723	27.3313	9.0735	2.87332
748	1.33690	559504	418508992	27.3496	9.0775	2.87390
749	1.33511	561001	420189749	27.3679	9.0816	2.87448
750	1.33333	562500	421875000	27.3861	9.0856	
751	1.33156	564001	423564751	27.4044	9.0896	2.87564
752	I. 32979	565504	425259008	27.4226	9.0937	2.87622
753	1.32802	567009	426957777	27.4408	9.0977	2.87679
754	1.32626	568516	428661064	27.4591	9.1017	2.87737
755	1.32450	570025	430368875	27.4773	9.1057	
756	I. 32275	571536	432081216	27.4955	9.1098	2.8785^{2}
757	1.32100	573049	433798093	27.5136	9.1138	2.87910
758	I. 31926	574564	435519512	27.5318	9.1178	2.87967
759	1.31752	576081	437245479	27.5500	9.1218	2.88024
760		577600	438976000	27.5681	9.1258	2.8808 I
761	1.31406	579121	440711081	27.5862	9.1298	2.88 I 38
762	1.31234	580644	442450728	27.6043	9.1338	2.88195
763	I. 31062	582169	444194947	27.6225	9.1378 9.1418	2.88252 2.88309
764	1.30890	583696	445943744	27.6405	9.1418	2.88309
765	1.30719	585225.	447697125	27.6586	9.1458	2.88366
766	1.30548	586756	449455096	27.6767	9.1498	2.88423
767	1.30378	588289	451217663	27.6948	9.1537	2.88480
768	1. 30208	589824	452984832	27.7128	9.1577	2.88536
769	1.30039	591361	454756609	27.7308	9.1617	2.88593

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	u^{2}	n^{8}	\sqrt{n}	$\sqrt[8]{n}$	$\log \cdot n$
770	1.29870	592900	456533000	27.7489	9.1657	2.88649
771	1.29702	594441	458314011	27.7669	9.1696	2.88705
772	1.29534	595984	460099648	27.7849	9.1736	2.88762
773	1. 29366	597529	461889917	27.8029	9.1775	2.88818
774	I. 29199	599076	463684824	27.8209	9.1815	2.88874
775	1.29032	600625	465484375	27.8388	9.1855	2.88930
776	1.28866	602176	467288576	27.8568	9.1894	2.88986
777	1.28700	603729	469097433	27.8747	9.1933	2.89042
778	1.28535	605284	470910952	27.8927	9.1973	2.89098
779	I. 28370	606841	472729139	27.9106	9.2012	2.89154
780	1.28205	608400	474552000	27.9285	9.2052	2.89209
781	1.28041	609961	476379541	27.9464	9.2091	2.89265
782	1.27877	6II524	478211768	27.9643	9.2130	2.89321
783	1.27714	613089	480048687	27.9821	9.2170	2.89376
784	1.27551	614656	481890304	28.0000	9.2209	2.89432
785	1.273^{89}	616225	483736625	28.0179	9.2248	2.89487
786	1.27226	617796	485587656	28.0357	9.2287	2.89542
787	1.27065	619369	487443403	28.0535	9.2326	2.89597
788	1. 26904	620944	489303872	28.0713	9.2365	2.89653
789	I. 26743	622521	491169069	28.0891	9.2404	2.89708
790	1.26582	624100	493039000	28.1069	9.2443	2.89763
791	1.26422	625681	49491367 I	28.1247	9.2482	2.89818
792	1.26263	627264	496793088	28.1425	9.2521	2.89873
793	1.26103	628849	498677257	28.1603	9.2560	2.89927
794	I. 25945	630436	500566184	28.1780	9.2599	2.89982
795	1.25786	632025	502459875	28.1957	9.2638	2.90037
796	1.25628	633616	504358336	28.2135	9.2677	2.90091
797	1.25471	635209	50626 I 573	28.2312	9.2716	2.90146
798	1.25313	636804	508169592	28.2489	9.2754	2.90200
799	1.25156	638401	510082399	28.2666	9.2793	2.90255
800	1. 25000	640000	512000000	28.2843	9.2832	2.90309
801	1.24844	641601	513922401	28.3019	9.2870	2.90363
802	1.24688	643204	515849608	28.3196	9.2909	2.90417
803	1.24533	644809	517781627	28.3373	9.2948	2.90472
804	1. 24378	646416	519718464	28.3549	9.2986	2.90526
805	1.24224	648025	521660125	28.3725	9.3025	2.90580
806	1. 24069	649636	523606616	28.3901	9.3063	2.90634
807	1.23916	651249	525557943	28.4077	9.3102	2.90687
808	1.23762	652864	5275 I 4 II 2	28.4253	9.3140	2.9074 I
809	1.23609	65448 I	529475129	28.4429	9.3179	2.90795
810	I. 23457	656100	531441000	28.4605	9.3217	2.90849
811	1.23305	657721	533411731	28.4781	9.3255	2.96902
8 I 2	1.23153	659344	535387328	28.4956	9.3294	2.90956
$8 \mathrm{8I} 3$	1.23001	660969	537367797	28.5132	9.3332	2.91009
814	1.22850	662596	539353144	28.5307	9.3370	2.91062
815	1. 22699	664225		28.5482	9.3408	2.91116
8 I 6	1. 22549	665856	543338496	28.5657	$9 \cdot 3447$	2.91169
817 818	1. 22399	667489	545338513	28.5832	9.3485	2.91222
818	I. 22249	669124	547343432	28.6007	9.3523	2.91275
819	1.22100	670761	549353259	28.6182	9.356 I	2.91328
820			551368000	28.6356	9.3599	2.913^{81}
821	1.21803	674041	553387661	28.6531	9.3637	2.91434
822	1.21655	675684	555412248	28.6705	9.3675	2.91487
823	I. 21507	677329	557441767	28.6880	9.3713	2.91540
824	I.21359	678976	559476224	28.7054	9.375 5	2.91593

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } 1$	$\sqrt[8]{n}$	$\log . x$
825	1.21212	680625	561515625	28.7228	9.3789	2.91645
826	1.21065	682276	563559976	28.7402	9.3827	2.91698
827	1.20919	683929	565609283	28.7576	9.3865	2.91751
828	1.20773	685584	567663552	28.7750	9.3902	2.91803
829	1.20627	68724 I	569722789	28.7924	9.3940	2.91855
830	1.20482	688900	571787000	28.8097	9.3978	2.91908
831	1.20337	690561	573856191	28.8271	9.4016	2.91960
832	1.20192	692224	575930368	28.8444	9.4053	2.92012
833	I. 20048	693889	578009537	28.8617	9.4091	2.92065
834	1.19904	695556	580093704	28.879 I	9.4129	2.92117
835	1.19760	697225	582182875	28.8964	9.4166	2.92169
836	1.19617	698896	584277056	28.9137	9.4204	2.9222 I
837	1. 19474	700569	586376253	28.9310	9.4241	2.92273
838	1.19332	702244	588480472	28.9482	9.4279	2.92324
839	1.19190	703921	590589719	28.9655	9.4316	2.92376
840	1.19048	705600	592704000	28.9828	9.4354	2.92428
841	1.18906	707281	594823321	29.0000	9.4391	2.92480
842	1.18765	708964	596947688	29.0172	9.4429	2.92531
843	1.18624	710649	599077107	29.0345	9.4466	2.92583
844	1.18483	712336	601211584	29.0517	9.4503	2.92634
845	I. 18343	714025	603351125	29.0689	9.454 I	2.92686
846	1.18203	715716	605495736	29.0861	9.4578	2.92737
847	1.18064	717409	607645423	29.1033	9.4615	2.92788
848 849	1.17925 1.17786	719104	609800192 611960049	29.1204	9.4652	2.92840
849	1.17786	720801	611960049	29.1376	9.4690	2.92891
850	1.17647	722500	614125000	29.1548	9.4727	2.92942
851	1.17509	724201	616295051	29.1719	9.4764	2.92993
852	1.1737 I	725904	618470208	29.1890	9.4801	2.93044
853	1.17233	727609	620650477	29.2062	9.4838	2.93095
854	1.17096	729316	622835864	29.2233	9.4875	2.93146
855	1.16959	731025	625026375	29.2404	9.4912	2.93197
856	1.16822	732736	627222016	29.2575	9.4949	2.93247
857	1.16686	734449	629422793	29.2746	9.4986	2.93298
858	1.16550	736164	631628712	29.2916	9.5023	2.93349
859	1.16414	737881	633839779	29.3087	9.5060	2.93399
860	1.16279	739600	636056000	29.3258	9.5097	2.93450
861	1.16144	741321	638277381	29.3428	9.51 34	2.93500
862	1.16009	743044	640503928	29.3598	9.5171	2.93551
863	1.15875	744769	642735647	29.3769	9. 5207	2.93601
864	1.15741	746496	644972544	29.3939	9.5244	2.93651
865	1.15607	748225		29.4109	9.528I	2.93702
866	1.15473	749956	649461896	29.4279	9.5317	2.93752
867	I.15340	751689	651714363	29.4449	9.5354 .	2.93802
868	1.15207	753424	653972032	29.4618 29.4788	9.5391 9.5427	2.93852
869	1.15075	755161	656234909	29.4788	9.5427	2.93902
870	1.14943	756900	658503000	29.4958	9.5464	2.93952
871	1.14811	758641	660776311	29.5127	9.5501	2.94002
872	1.14679	760384 762129	663054848 66533817	29.5296 29.5466	9.5537	2.94052 2.94101
873 874	1.14548 1.14416	762129 763876	665338617 667627624	29.5466 29.5635	9.5574 9.5610	$\begin{aligned} & 2.94 \mathrm{IOI} \\ & 2.94 \mathrm{I} 51 \end{aligned}$
874	1.14416	763876	667627624	29.5635	9.5610	2.94151
875	1.14286			29.5804		
876 877	1.14155 1.14025	767376 769129	672221376 674526133	$\begin{array}{r} 29.5973 \\ 29.6142 \end{array}$	$\begin{aligned} & 9.5683 \\ & 9.5719 \end{aligned}$	$\begin{aligned} & 2.94250 \\ & 2.94300 \end{aligned}$
877 878	1.14025 1.13895	769129 770884	674526133 676836152	29.6142 29.6311	9.5719 9.5756	2.94300 2.94349
879	1.13766	772641	679151439	29.6479	9.5792	2.94399

Table 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON'LOGARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{\pi}$	n^{2}	n^{3}	$\sqrt{ } \times$	$8 \sqrt{n}$	$\log . n$
880	1.13636	774400	681472000	29.6648	9.5828	2.94448
881	1. 13507	776161	683797841	29.6816	9.5865	2.94498
882	1.13379	777924	686128968	29.6985	9.5901	2.94547
883	I.13250	779689	688465387	29.7153	9.5937	2.94596
884	I. 13122	781456	690807104	29.732 I	9.5973	2.94645
885	I.I2994	783225	693154125	29.7489	9.6010	2.94694
886	1.12867	784996	695506456	29.7658	9.6046	2.94743
887	1.12740	786769	697864103	29.7825	9.6082	2.94792
888	I.12613	788544	700227072	29.7993	9.6118	2.94841
889	I.I2486	79032 I	702595369	29.816 I	9.6154	2.94890
890	1.12360	792100	704969000	29.8329	9.6190	2.94939
891	1.12233	79388 I	707347971	29.8496	9.6226	2.94988
892	1.12108	795664	709732288	29.8664	9.6262	2.95036
893	I.11982	797449	712121957	29.8831	9.6298	2.95085
894	I.I1857	799236	714516984	29.8998	9.6334	2.95134
895	I.II732	801025	716917375	29.9166	9.6370	2.95182
896	1.11607	802816	719323136	29.9333	9.6406	2.95231
897	I.11483	804609	721734273	29.9500	9.6442	2.95279
898	1.11359	806404	724150792	29.9666	9.6477	2.95328
899	1.11235	808201	726572699	29.9833	9.6513	2.95376
900	1.11111	810000	729000000	30.0000	9.6549	2.95424
901	1.10988	811801	731432701	30.0167	9.6585	2.95472
902	1.10865	813604	733870808	30.0333	9.6620	2.95521
903	1.10742	815409	736314327	30.0500	9.6656	2.95569
904	1.10619	817216	738763264	30.0666	9.6692	2.95617
905	1.10497	819025	741217625	30.0832	9.6727	2.95665
906	1.10375	820836	743677416	30.0998	9.6763	2.95713
907	1.10254	822649	746142643	30.1164	9.6799	2.95761
908	1.10132	824464	748613312	30.1330	9.6834	
909	1.10011	82628I	751089429	30.1496	9.6870	2.95856
910	1.09890	828100	753571000	30.1662	9.6905	
911	1.09769	829921	756058031	30.1828	9.694 I	2.95952
912	1.09649	831744	758550528	30.1993	9.6976	2.95999
913	1.09529	833569	761048497	30.2159	9.7012	2.96047
914	1.09409	835396	763551944	30.2324	9.7047	2.96095
915	1.09290		766060875	30.2490	9.7082	
916	1.09170	839056	768575296	30.2655	9.7118	2.96190
917	1.09051	840889	771095213	30.2820	9.7153	2.96237
918	1.08932	842724	773620632	30.2985	9.7188	2.96284
919	1.08814	844561	776151559	30.3150	9.7224	2.96332
920	1. 08696	846400	778688000		9.7259	
921	1.08578	848241	78122996r	30.3480	9.7294	2.96426
922	1.08460	850084	783777448	30.3645	9.7329	2.96473
923	1.08342	851929 853776	786330467	30.3809	9.7364	2.96530
924	1.08225	853776	788889024	30.3974	9.7400	2.96567
	1.08r08			30.4138		
926	1.07991	857476	794022776	30.4302	9.7470	2.96661
927	1.07875	859329	796597983	30.4467	9.7505	2.96708
928	1.07759	861184	799178752	30.4631	9.7540	2.96755
929	1.07643	863041	801765089	30.4795	9.7575	2.96802
930	1.07527	864900	804357000	30.4959	9.7610	2.96848
931	1.07411	866761	806954491	30.5123	9.7645	2.96895
932	1.07296	868624	809557568	30.5287	9.7680	2.96942
933	1.07181	870489 87235	812166237	30.5450	9.7715	2.96988
934	1.07066	872356	814780504	30.5614	9.7750	2.97035

Smithsonian Tables. ROOTS, AND COMMON' LOCARITH'MS OF NATURAL NUMBERS.

n	$1000 \cdot \frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	8 n	log. n
935	1.06952	874225	817400375	30.5778	9.7785	2.97081
936	1.06838	876096	820025856	30.5941	9.7819	2.97128
937	1.06724	877969	822656953	30.6105	9.7854	2.97174
938	1.06610	879844	825293672	30.6268	9.7889	2.97220
939	1.06496	881721	827936019	30.643 I	9.7924	2.97267
940	1.06383	883600	830584000	30.6594	9.7959	2.97313
941	1.06270	885481	833237621	30.6757	9.7993	2.97359
942	I.061 57	887364	835896888	30.6920	9.8028	2.97405
943	1.06045	889249	838561807	30.7083	9.8063	2.9745 I
944	1.05932	891136	841532384	30.7246	9.8097	2.97497
945	1.05820	893025	843908625	30.7409	9.8132	2.97543
946	1.05708	894916	84.6590536	30.757 I	9.8167	2.97589
947	1.05597	896809	849278123	30.7734	9.8201	2.97635
948	1.05485	898704	851971392	30.7896	9.8236	2.9768 I
949	1.05374	900601	854670349	30.8058	9.8270	2.97727
950	1.05263	902500	857375000	30.8221	9.8305	2.97772
951	1.05152	904401	860085351	30.8383	9.8339	2.97818
952	1.05042	906304	862801408	30.8545	9.8374	2.97864
953	1.04932	908209	865523177	30.8707	9.8408	2.97909
954	1.04822	910116	868250664	30.8869	9.8443	2.97955
955	1.04712	912025	870983875	30.9031	9.8477	2.98000
956	1.04603	913936	873722816	30.9192	9.851 I	2.98046
957	1.04493	915849	876467493	30.9354	9.8546	2.98091
958	1.04384	917764	879217912	30.9516	9.8580	2.98137
959	1.04275	919681	881974079	30.9677	9.8614	2.98182
960	1. 04167	921600	884736000	30.9839	9.8648	2.98227
961	1.04058	923521	88750368 I	31.0000	9.8683	2.98272
962	1.03950	925444	890277128	31.0161	9.8717	2.98318
963	1.03842	927369	893056347	31.0322	9.8751	2.98363
964	1.03734	929296	895841344	31.0483	9.8785	2.98408
	1.03627 I. 03520					
966 967	1.03520 1.03413	933156 935089	901428696 904231063	31.0805 31.0966	9.8854 9.8888	$\begin{aligned} & 2.98498 \\ & 2.98543 \end{aligned}$
968	1.03306	937024	907039232	31.1127	9.8922	2.98588
969	1.03199	938961	909853209	31.1288	9.8956	2.98632
970	1.03093	940900	912673000	31.1448	9.8990	2.98677
971	1.02987	942841	915498611	31.1609	9.9024	2.98722
972	I. 02881	944784	918330048	31.1769	9.9058	2.98767
973	1.02775 1.02669	946729 948676	921167317 924010424	31.1929 31.2090	9.9092 9.9126	2.9881 I
974	1.02669	948676	924010424	$3^{1.2090}$	9.9126	2.98856
975	1.02564	950625	926859375	31.2250	9.9160	
976	I. 02459	952576	929714176	3 3 .24 .10	9.9194	2.98945
977	1.02354	954529	932574833	3 S .2570	9.9227	2.98989
978	1.02249	956484	935441352	3 3 .2730	9.9261	2.99034 2.99078
979	1.02145	95844 I	938313739	31.2890	9.9295	2.99078
980	1.02041	960400	941192000	3 T .3050	9.9329	2.99123
98 I	1.01937	962361	944076141	31.3209	9.9363	2.99167
982	I. 01833	964324	946966168	3 L .3369	9.9396	2.99211
983	1.01729	966289	949862087		9.9430	
984	1.01626	968256	952763904	31.3688	9.9464	2.99300
985	1.O1 523	970225	955671625	31.3847	9.9497	2.99344
986	1.01420	972196	958585256	31.4006	9.9531	2.99388
987	1.01317	974169	961504803	31.4166	9.9565	2.99432
988	1.01215	976144	964430272	31.4325	9.9598	2.99476
989	1.01112	978121	967361669	$3^{1} \cdot 4484$	9.9632	2.99520

Table 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$	$\sqrt[8]{n}$	log. n
990	1.01010	980100	970299000	31.4643	9.9666	2.99564
991	1.00908	982081	97324227 I	3 3 .4802	9.9699	2.99607
992	1.00806	984064	976191488	31.4960	9.9733	2.99651
993	1.00705	986049	979146657	31.5119	9.9766	2.99695
994	1.00604	988036	982107784	31.5278	9.9800	2.99739
995	1.00503	990025	985074875	31.5436	9.9833	
996	1.00402	992016	988047936	31.5595	9.9866	2.99826
997	r.00301	994009	991026973	31.5753	9.9900	2.99870
998	1.00200	996004	994011992	31.5911	9.9933	2.99913
999	1.00100	998001	997002999	31.6070	9.9967	2.99957
1000	1.00000	1000000	1000000000	31.6228	10.0000	3.00000

CIRCUMFERENCE AND AREA OF CIRCLE IN TERMS OF DIAMETER a.

d	πd	$\frac{1}{4} \pi d^{2}$	d	πd	$\frac{1}{4} \pi d^{2}$	d	πd	$\frac{1}{4} \pi d^{2}$
10	31.416	78.5398	40	125.66	1256.64	70	219.91	3848.45
II	34.558	95.0332	41	I 28.81	1320.25	71	223.05	3959.19
12	37.699	113.097	42	13 I .95	I 385.44	72	226.19	4071.50
13	40.841	132.732	43	135.09	1452.20	73	229.34	4185.39
14	43.982	153.938	44	138.23	1520.53	74	232.48	4300.84
15	47.124	176.715	45	141.37	I 590.43	75	235.62	4417.86
16	50.265	201.062	46	144.51	1661.90	76	238.76	4536.46
17	53.407	226.980	47	147.65	1734.94	77	241.90	4656.63
18	56.549	254.469	48	150.80	1809.56	78	245.04	4778.36
19	59.690	283.529	49	153.94	1885.74	79	248.19	4901.67
20	62.832	314.159	50	157.08	1963.50	80	251.33	5026.55
2 I	65.973	346.361	51	160.22	2042.82	8 I	254.47	5153.00
22	69.115	380.133	52	163.36	2123.72	82	257.61	528 I .02
23	72.257	415.476	53	166.50	2206.18	83	260.75	5410.61
24	$75 \cdot 398$	452.389	54	169.65	2290.22	84	263.89	5541.77
	78.540 81.681	490.874 530.929		172.79 175.93	2375.83	85 86	267.04 270.18	5674.50 5808.80
26 27	81.68 I 84.823	530.929	56	175.93	2463.01	86 87	270.18	5808.80
	84.823	572.555	57	I 79.07	2551.76	87	273.32	5944.68
28	87.965	615.752	58	182.21	2642.08	88	276.46	6082.12
29	9 T .106	66.520	59	185.35	2733.97	89	279.60	6221.14
30	94.248	706.858	60	188.50	2827.43	90	282.74	6361.73
31	97.389	754.768	61	191. 64	2922.47	9 I	285.88	6503.88
32	100.53	804.248	62	194.78	3019.07	92	289.03	6647.61
33	103.67	855.299	63	197.92	3117.25	$93{ }^{\circ}$	292.17	6792.91
34	106.81	907.920	64	201.06	3216.99	94	295.31	6939.78
35	109.96	962.113	65	204.20	3318.31	95	298.45	7088.22
36	113.10	IOT 7.88	66	207.35	342 I. 19	96	301.59	7238.23
37	116.24	1075.21	67	210.49	3525.65	97	304.73	7389.81
38 39	119.38	1134.11	68	213.63	3631.68	98	307.88	7542.96
39	122.52	I 194.59	69	216.77	3739.28	99	311.02	7697.69

Smithsonian Tables.

Smithsonian Tables.

LOGARITHMS OF NUMBERS.

Smithsonian Tables.

Smithsonian Tables.

ANTILOGARITHMS.

Smithsonian Tables.

Table 7.

Natural Sines.

Angle.	0^{\prime}	10^{\prime}	20'	30^{\prime}	40^{\prime}	50'	60^{\prime}	Angle.	Proy. Parts for 1 .
0°	. 000000	. 002909	. 005818	. 008727	. 011635	. 014544	. 01745^{2}	89°	2.9
1	. 017452	. 02036	. 02327	.026I 8	. 02908	. 03199	. 03490	88	2.9
2	. 03490	. 03781	. 04071	. 04362	. 04653	. 04943	. 05234	87	2.9
3	. 05234	. 05524	.05814	.0610 5	. 06395	. 06685	. 06976	86	2.9
4	. 06976	. 07266	. 07556	. 07846	.08136	. 08426	. 08716	85	2.9
5	.087r 6	. 09005	. 09295	. 09585	. 09874	.ror 64	.10453	84	2.9
6	. 10453	. 10742	. 1103 I	.11320	. 11609	.11898	. 12187	83	2.9
7	.12187	. 12476	.12764	. 13053	. 334	. 1363	. 1392	82	2.9
8	. 1392	.1421	. 1449	.1478	. 1507	. 1536	. 1564	8 r	2.9
9	.I 564	.I 593	. 1622	. 1650	.1679	. 1708	. 1736	80	2.9
10	. 1736	. 1765	. 1794	. 1822	. 1851	. 1880	. 1908	79	2.9
11	.1908	. 1937	.1965	. 1994	. 2022	. 2051	. 2079	78	2.9
12	. 2079	. 2108	. 2136	. 2164	. 2193	. 2221	. 2250	77	2.8
13	. 2250	. 2278	. 2306	. 2334	. 2363	. 2391	. 2419	76	2.8
14	.2419	. 2447	. 2476	. 2504	.2532	:2560	. 2588	75	2.8
15	. 2588	. 2616	. 2644	. 2672	. 2700	. 2728	. 2756	74	2.8
16	. 2756	. 2784	.2812	. 2840	. 2868	. 2896	. 2924	73	2.8
17	. 2924	. 2952	. 2979	-3007	. 3035	. 3062	-3090	72	2.8
18	. 3090	-3118	.3145	. 3173	. 3201	. 3228	. 3256	71	2.8
19	.3256	.3283	.331 1	. 3338	. 3365	. 3393	- 3420	70	2.7
20	. 3420	. 3448	-3475	. 3502	. 3529	. 3557	. 3584	69	2.7
21	. 3584	. 3611	. 3638	. 3665	. 3692	. 3719	. 3746	68	2.7
22	. 3746	. 3773	. 3800	. 3827	. 3854	. 3881	. 3907	67	2.7
23	. 3907	. 3934	-3961	. 3987	. 4014	.4041	. 4067	66	2.7
24	. 4067	. 4094	. 4120	. 4147	-4173	. 4200	. 4226	65	2.7
25	. 4226	.4253	. 4279	. 4305	.4331	. 4358	.4384	64	2.6
26	. 4384	.4410	. 4436	. 4462	. 4488	. 4514	. 4540	63	2.6
27	-4540	. 4566	. 4592	- 4617	. 4643	. 4669	. 4695	62	2.6
28	. 4695	. 4720	. 4746	. 4772	. 4797	. 4823	. 4848	61	2.6
29	. 4848	. 4874	. 4899	. 4924	. 4950	. 4975	. 5000	60	2.5
30	. 5000	. 5025	. 5050	. 5075	. 5100	. 5125	. 5150	59	2.5
31	. 5150	. 5175	. 5200	. 5225	. 5250	. 5275	. 5299	. 58	2.5
32	. 5299	. 5324	. 5348	. 5373	. 5398	. 5422	. 5446	57	2.5
33	. 5446	. 54771	. 5495	.5519 .5664	. 5544	. 5568	. 5592	56	2.4
34	- 5592	-56r6	. 5640	. 5664	. 5688	. 5712	. 5736	55	2.4
35	. 5736	. 5760	.5783	. 5807	. 5831	. 5854	. 5878	54	2.4
36	. 5878	. 5901	. 5925	. 5948	. 5972	. 5995	. 6013	53	2.3
37	. 6018	. 604 I	. 6065	. 6088	.6111	. 6134	. 6157	52	2.3
38	.6157 6293	. 6180	. 6202	. 6225	. 6248	. 6271	. 6293	51	2.3
39	. 6293	. 6316	. 6338	.636I	. 6383	. 6406	. 6428	50	2.3
40	.. 6428		. 6472					49	2.2
41	. 6561	. 6583	. 6604	. 6626	. 6648	. 6670	. 6691	48	2.2
42	..6691	. 6713	. 6734	. 6756	. 6777	. 6799	. 6820	47	2.2
- 43	. 6820	. 6841	. 6862	. 6884	. 6905	. 6926	. 6947	46	2.1
- 44	.. 6947	. 6967	. 6988	.7009	. 7030	.7050	.7071	45	2.1
	60'	50^{\prime}	40^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	Angle.	

Smithsonian Tables.

NATURAL SINES AND COSINES.
Natural Sines.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Angle. \& \(0^{\prime}\) \& 10' \& \(20^{\prime}\) \& \(30^{\prime}\) \& 40' \& \(50^{\prime}\) \& 60' \& Angle. \& \[
\left\lvert\, \begin{aligned}
\& \text { Prop, } \\
\& \text { Parto } \\
\& \text { tar 1. }
\end{aligned}\right.
\] \\
\hline \(45^{\circ}\) \& .7071 \& . 7092 \& 7112 \& 7133 \& . 7153 \& . 7173 \& . 7193 \& \(44^{\circ}\) \& 2.0 \\
\hline 46 \& .7193 \& . 7214 \& . 7234 \& . 7254 \& . 7274 \& . 7294 \& . 7314 \& 43 \& 2.0 \\
\hline 47 \& . 7314 \& . 7333 \& . 7353 \& . 7373 \& . 7392 \& . 7412 \& .743I \& 42 \& 2.0 \\
\hline 48 \& .743r \& . 77515 \& . 7478 \& . 7490 \& . 7509 \& . 7528 \& . 7547 \& \(4{ }^{1}\) \& 1.9 \\
\hline 49 \& .7547 \& . 7566 \& . 758 \& . 7604 \& . 7623 \& . 7642 \& . 7660 \& 40 \& 1.9 \\
\hline 50 \& . 7660 \& . 7679 \& . 7698 \& . 7716 \& . 7735 \& . 7753 \& .7771 \& 39 \& 1.9 \\
\hline 51 \& .7771 \& . 7790 \& .7808 \& . 7826 \& . 7844 \& . 7868 \& . 7880 \& 38 \& 1.8 \\
\hline \begin{tabular}{l}
52 \\
53 \\
\hline
\end{tabular} \& \& .7898 \& .7916
.8021 \& . 7934 \& . 7951 \& . 7969 \& .7986 \& 37
36 \& I. 8
I .7 \\
\hline 54 \& . 8090 \& . 8107 \& . 8 I 24 \& . 8141 \& . 8158 \& . 8175 \& . 8192 \& 35 \& \(\begin{array}{r}1.7 \\ \mathrm{r} \\ \hline\end{array}\) \\
\hline 55 \& . 8192 \& . 8208 \& . 8225 \& .8241 \& . 8258 \& . 8274 \& . 8290 \& 34 \& r. 6 \\
\hline 56 \& .8290 \& . 8307 \& . 8323 \& . 8339 \& . 8355 \& . 8371 \& . 8387 \& 33 \& 1.6 \\
\hline 57
58 \& . 8388 \& . 8403 \& . 8418 \& . 8434 \& . 8450 \& . 8465 \& . 8480 \& 32 \& 1. 6 \\
\hline 58 \& . 8480 \& .8496 \& . 8511 II \& . 8526 \& . 8542 \& . 8555 \& . 8572 \& 31 \& 1.5 \\
\hline 59 \& . 8572 \& . 8587 \& \& \& .8631 \& . 8646 \& . 8660 \& 30 \& 1.5 \\
\hline 60 \& . 8660 \& . 8675 \& . 8689 \& . 8704 \& . 8718 \& . 8732 \& . 8746 \& 29 \& 1.4 \\
\hline 6 F \& . 8746 \& . 8760 \& . 8774 \& . 8788 \& . 8802 \& . 8816 \& . 8829 \& 28 \& 1.4 \\
\hline 62 \& . 8829 \& . 8843 \& . 8857 \& . 8870 \& . 8884 \& . 8897 \& . 8910 \& 27 \& - 1.4 \\
\hline 63 \& . 89810 \& . 8923 \& . 8936 \& . 8949 \& . 8962 \& . 8975 \& . 8998 \& 26 \& I. 3 \\
\hline 64 \& . 8988 \& . 9001 \& . 9013 \& . 9026 \& . 9038 \& . 9051 \& . 9063 \& 25 \& 1.3 \\
\hline 65 \& . 9063 \& . 9075 \& . 9088 \& . 9100 \& . 9112 \& .9124 \& .9135 \& 24 \& 1.2 \\
\hline 66 \& . 9135 \& . 9147 \& .9159 \& . 9171 \& -9182 \& . 9194 \& .9205 \& 23 \& I. 2 \\
\hline 67 \& . 9205 \& . 9216 \& . 9228 \& . 9239 \& . 9250 \& .926I \& . 9272 \& 22 \& 1.1 \\
\hline 68 \& . 9272 \& . 9283 \& . 9293 \& . 9304 \& . 9315 \& . 9325 \& . 9336 \& 21 \& \({ }^{1.1}\) \\
\hline 69 \& . 9336 \& . 9346 \& . 9356 \& . 9367 \& . 9377 \& . 9388 \& -9397 \& 20 \& I. 0 \\
\hline 70 \& . 9397 \& . 9407 \& .9417 \& . 9426 \& . 9436 \& . 9446 \& . 9455 \& 19 \& 1.0 \\
\hline 71 \& . 9455 \& . 9465 \& . 9474 \& . 9483 \& . 9492 \& . 9502 \& . 9511 \& 18 \& 0.9 \\
\hline 72 \& .9511 \& -9520 \& . 9528 \& . 95387 \& . 9546 \& . 9555 \& . 9563 \& 17 \& -0.9 \\
\hline 73
74 \& .9563 \& . 95972 \& . 95680 \& . 95688 \& . 9596 \& . 9605 \& . 9613 \& \({ }_{15}^{15}\) \& 0.8
0.8 \\
\hline 74 \& . 9613 \& . 9621 \& . 9628 \& . 9636 \& .9644 \& . 9652 \& . 9659 \& 15 \& 0.8 \\
\hline 75 \& . 9659 \& . 9667 \& . 9674 \& .9681 \& . 9689 \& . 9696 \& . 9703 \& 14 \& 0.7 \\
\hline 76 \& . 9703 \& . 97710 \& .9717 \& . 9724 \& . 9730 \& . 9737 \& . 9744 \& I3 \& 0.7 \\
\hline 77
78 \& . 9744 \& .9750
.9787 \& . 97575 \& . 9763 \& . 9769 \& . 97715 \& .978 r
.9816 \& \begin{tabular}{l}
12 \\
11 \\
\hline 1
\end{tabular} \& 0.6
0.6 \\
\hline 78
79 \& .97816 \& .9787
.9822 \& . 97893 \& . 97893 \& . 98838 \& . 98813 \& .9816
.9848 \& İ
IO \& 0.6
0.5 \\
\hline 80 \& . 9848 \& . 9853 \& . 9858 \& . 9863 \& . 9868 \& . 9872 \& . 9877 \& 9 \& 0.5 \\
\hline \(8 \mathrm{8r}\) \& . 9877 \& . 988 I \& . 9886 \& . 9890 \& . 9894 \& . 9899 \& . 9903 \& 8 \& 0.4 \\
\hline 82 \& . 9903 \& . 9907 \& . 9911 \& . 9914 \& . 9918 \& . 9922 \& . 9925 \& 7 \& 0.4 \\
\hline 8 \& . 9925 \& . 9929 \& . 9932 \& . 9936 \& -9939 \& . 9942 \& -9945 \& 6 \& 0.3 \\
\hline 84 \& . 9945 \& . 9948 \& . 9951 \& . 9954 \& . 9957 \& . 9959 \& . 9962 \& 5 \& 0.3 \\
\hline 85 \& . 9962 \& . 9964 \& . 9967 \& . 9969 \& . 9971 \& . 9974 \& . 9976 \& 4 \& 0.2 \\
\hline 86 \& . 9976 \& . 9978 \& . 9980 \& . 9985 \& . 9983 \& . 9985 \& . 9986 \& 3 \& 0.2 \\
\hline 87 \& . 9986 \& . 9988 \& . 9989 \& . 9990 \& . 9992 \& -9993 \& . 9994 \& 2 \& 0.1 \\
\hline 89 \& . 9994 \& . 99999 \& . 99996 \& \(\begin{array}{r}.9997 \\ \hline 1.0000\end{array}\) \& r. 9997

1.000 \& r. \& $\begin{array}{r}\text { r } \\ \hline\end{array}$ \& $\stackrel{1}{\circ}$ \& 0.1
0.0

\hline \& 60° \& 50' \& 40^{\prime} \& 30^{\prime} \& 20^{\prime} \& 10' \& 0^{\prime} \& Anglo. \&

\hline
\end{tabular}

Emithsonian Tables.
Natural Cosines.

NATURAL TANGENTS AND COTANGENTS.
Natural Tangents.

Angle.	0^{\prime}	10'	20^{\prime}	30^{\prime}	40^{\prime}	50'	60^{\prime}	Angle.	Prop. Parts for 1".
0°	. 00000	. 0029 I	. 00582	. 00873	. 01164	. 01455	.01746	89°	2.9
1	. 01746	. 02036	. 02328	. 02619	.02910	. 03201	. 03492	88	2.9
2	.03492	. 0378	. 04075	. 04366	. 04658	. 04949	. 05241	87	2.9
3	. 05241	. 05533	. 05824	.06II 6	. 06408	. 06700	. 06993	86	2.9
4	. 06993	. 07285	. 07578	. 07870	. 08163	.08456	. 08749	85	2.9
5	. 08749	. 09042	. 09335	.09629	.09923	.1021 6	.10510	84	2.9
6	. 10510	. 10805	. 11099	.II39 4	. 11688	. 11983	. 12278	83	2.9
7	. 12278	. 12574	. 12869	.13165	. 1346	. 1376	. 1405	82	3.0
8	. 1405	.1435	.1465	. 1495	. 1524	. 1554	. 1584	$8 \mathrm{8r}$	3.0
9	. 1584	.16I4	. 1644	.1673	.1703	. 1733	. 1763	80	3.0
10	. 1763	. 1793	. 1823	. 1853	. 1883	. 1914	. 1944	79	3.0
11	. 1944	. 1974	. 2004	. 2035	. 2065	. 2095	. 2126	78	3.0
12	.2126	.2156	. 2186	.2217	. 2247	. 2278	.2309	77	3.1
13	. 2309	. 2339	. 2370	. 2401	. 2432	. 2462	. 2493	76	3.1
14	. 2493	. 2524	. 2555	. 2586	. 2617	. 2648	. 2679	75	3.1
15	. 2679	. 2711	. 2742	. 2773	. 2805	. 2836	. 2867	74	$3 \cdot 1$
16	. 2867	. 2899	. 2931	. 2962	. 2994	. 3026	. 3057	73	3.2
17	. 3057	. 3089	-3121	. 3153	. 3185	-3217	. 3249	72	3.2
18	. 3249	. 328 r	.3314	. 3346	-3378	. 3411	. 3443	71	3.2
19	. 3443	. 3476	. 3508	. 3541	-3574	$\cdot 3607$	- 3640	70	$3 \cdot 3$
20	. 3640	. 3673	.3706	. 3739	. 3772	.3805	.3839	69	$3 \cdot 3$
21	. 3839	.3872	. 3906	.3939	. 3973	. 4006	. 4040	68	3.4
22	. 4040	. 4074	-4108	. 4142	.4176	.4210	. 4245	67	3.4
23	. 4245	. 4279	. 4314	. 4348	. 4383	. 4417	. 4452	66	$3 \cdot 5$
24	. 445^{2}	. 4487	. 45^{22}	. 4557	. 4592	. 4628	.4663	65	3.5
25	. 4663	. 4699	. 4734	. 4770	. 4806	. 4841	. 4877	64	3.6
26	. 4877	. 4913	. 4950	. 4986	. 5022	. 5059	. 5095	63	3.6
27	. 5095	-51 3^{2}	. 5169	. 5206	. 5243	. 5280	. 5317	62	3.7
28	. 5317	- 5354	. 5392	. 5430	. 5467	. 5505	. 5543	61	3.8
29	. 5543	-558I	. 5619	. 5658	. 5696	. 5735	. 5774	60	3.8
30	. 5774	. 5812	. 5851	. 5890	. 5938	. 5969	. 6009	59	3.9
31	. 6009	. 6048	. 6088	. 6128	. 6168	. 6208	. 6249	58	4.0
32	. 6249	. 6289	. 6330	. 6371	. 6412	. 6453	. 6494	57	4.1
33	. 6494	. 6536	. 6577	. 6619	. 6661	. 6703	. 6745	56	4.2
34	. 6745	. 6787	. 6830	. 6873	. 6916	. 6959	. 7002	55	$4 \cdot 3$
35	. 7002	. 7046	. 7089	.7133	. 7177	. 7221	$.7265^{\circ}$	54	4.4
36	.7265	.7310	.7355 .7627	.7400 .7673	. 7445	. 7490	. 7536	53	4.5
37	.7536 .7813	.7581 .7860	.7627 .7907	.7673 .7954	.7720	. 7766	.7813	52	4.6 4.7
39	. 8098	.8146	. 8195	. 8243	. 8292	. 8342	. 8391	50	4.7
40	.8391	. 8441	. 8491	. 8541	. 8591	. 8642	. 8693	49	5.0
41	. 8693	. 8744	. 8796	. 8847	. 8899	. 8952	. 9004	48	5.2
42	. 9004	. 9057	.9110	. 9163	. 9217	. 9271	. 9325	47	$5 \cdot 4$
43	. 9325	. 9380	. 9435	. 9490	. 9545	.9601	. 9657	46	$5 \cdot 5$
44	. 9657	.9713	. 9770	. 9827	. 9884	. 9942	1.0000	45	5.7
	60'	50'	40°	30^{\prime}	20'	10^{\prime}	0^{\prime}	Angle.	

Smithsonian Tables.
Natural Cotangents.

Natural Tangents.

Angis,	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}	60^{\prime}	Angle.	Prop. Parts for 1^{\prime}.
45°	1.0000	1.0058	1.0117	1.0176	1.0235	1. 0295	1.0355	44°	$5 \cdot 9$
46	1.0355	1.0416	1.0477	1.0538	1.0599	1.066 I	1.0724	43	6.1
47	1.0724	1.0786	1.0850	1.0913	1.0977	1.104	1.1106	42	6.4
48	1.1106	1.1171	1.1237	1.1303	1.1369	1.1436	1.1504	41	6.6
49	1.1504	1.1571	1.1640	1.1708	1.1778	I.I847	1.1918	40	6.9
50	1.1918	1.1988	1.2059	1.2131	1.2203	1.2276	1.2349	39	7.2
51	1.2349	1.2423	1.2497	1.2572	1.2647	1.2723	1. 2799	38	7.5
52	I. 2799	1.2876	1.2954	I. 3032	I.3111	1.3190	1.3270	37	7.9
53	I. 3270	1.3351	1.3432	1.3514	I. 3597	I. 3680	1.3764	36	8.2
54	1.3764	1.3848	1.3934	1.4019	1.4106	1.4193	I.428r	35	8.6
55	1.428r	1.4370	1.4460	1.4550	1.464 I	I. 4733	1.4826	34	9.1
56	1.4826	1.4919	1.5013	1.5108	1. 5204	1.5301	I. 5399	33	9.6
57	1.5399	1.5497	1.5597	I. 5697	1.5798	1.5900	1.6003	32	10.1
58	1.6003	1.6107	1.6212	1.6319	1.6426	1.6534	$\pm .6643$	31	10.7
59	1.6643	1.6753	1. 6864	ェ. 6977	1.7090	1.7205	1.732 I	30	11.3
60	1.7321	1.7437	1.7556	1. 7675	1.7796	1.7917	1.8040	29	12.0
61	1.8040	1.8165	1.8291	1.8418	1.8546	1.8676	1.8807	28	12.8
62	1.8807	1.8940	1.9074	1.9210	1.9347	1.9486	1.9626	27	13.6
63	1.9626	1.9768	1.9912	2.0057	2.0204	2.0353	2.0503	26	14.6
64	2.0503	2.0655	2.0809	2.0965	2.1123	2.1283	2.1445	25	15.7
65	2.1445	2.1609	2.1775	2.1943	2.2113	2.2286	2.2460	24	16.9
66	2.2460	2.2637	2.2817	2.2998	2.3183	2.3369	2.3559	23	18.3
67	2.3559	2.3750	2.3945	2.4142	2.4342	2.4545	2.4751	22	19.9
68	2.4751	2.4960	2.5172	2.5386	2.5605	2.5826	2.6051	21	21.7
69	2.6051	2.6279	2.6511	2.6746	2.6985	2.7228	2.7475	20	23.7
70	2.7475	2.7725	2.7980	2.8239	2.8502	2.8770	2.9042	19	
71	2.9042	2.9319	2.9600	2.9887	3.0178	3.0475	3.0777	18	
72	3.0777	3.1084	3.1397	3.1716	3.2041	3.237 I	3.2709	17	
73	3.2709	3.305^{2}	3.3402	3.3759	3.4124	3.4495	3.4874	16	
74	$3 \cdot 4874$	$3 \cdot 526 \mathrm{t}$	$3 \cdot 5656$	3.6059	3.6470	3.689 I	3.7321	15	
75	3.7321	3.7760	3.8208	3.8667	3.9136	3.9617	4.0108	14	
76	4.0108	4.0611	4.1126	4.1653	4.2193	4.2747	4.3315	13	
77	4.3315	$4 \cdot 3897$	4.4494	4.5107	4.573^{6}	4.6382	4.7046	12	
78	4.7046	4.7729	4.8430	4.9152	4.9894	5.0658	5.1446	11	
79	5.1446	5.2257	$5 \cdot 3093$	$5 \cdot 3955$	5.4845	$5 \cdot 5764$	5.6713	Io	
130	5.6713	5.7694	5.8708	5.9758	6.0844	6.1970	6.313^{8}	9	
81	6.3138	6.4348	6.5606	6.6912	6.8269	6.9682	7.1154	8	
82	7.1154	7.2687	7.4287	7.5958	7.7704	7.9530	8.1443	7	
83	8.1443	8.3450	8.5555	8.7769	9.0098	9.2553	9.5144	6	
84	9.5144	9.7882	10.0780	10.3854	10.7119	11.0594	II 1.4301	5	
85	I 1.4301	11.8262	12.2505	12.7062	13.1969	13.7267	14.3007	4	
86	14.3007	14.9244	15.6048	16.3499	17.1693	18.0750	19.0811		
87	19.08II	20.2056	21.4704	22.9038	24.5418	26.4316	28.6363	2	
88	28.6363	31.2416	34.3678	38.1885	42.964 I	49.1039	57.2900	1	
89	57.2900	69.7501	85.9398	I 14.5887	171.8854	343.7737	∞	0	
	60'	50'	40'	30^{\prime}	20'	10^{\prime}	0^{\prime}	Angle.	

Smithsonian Tables.
Natural Cotangents.

DIFFERENCES OF LATITUDE AND DEPARTURE．

		0°		$1{ }^{\circ}$		2°			$\begin{aligned} & \dot{0} \\ & \stackrel{\rightharpoonup}{y} \\ & \underset{y y y}{\mid c} \end{aligned}$
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
0	1	1.00000	0.00000	0.99984	0.01745	0.99939	0.03490	1	
	2	2.00000	0.00000	1.99969	0.03490	1.99878	0.06980	2	
	3	3.00000	0.00000	2.99954	0.05235	2.99817	0.10470	3	
	4	4.00000	0.00000	3.99939	0.06980	3.99756	0.13960	4	
	5	5.00000	0.00000	4.99923	0.08726	4.99695	0.17450	5	60
	6	6.00000	0.00000	5.99908	0.10471	5.99634	0.20940	6	
	7	7.00000	0.00000	6.99893	0.12216	6.99573	0.24430	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	8.00000	0.00000	7.99875	0.13961	7.99512	0.27920	8	
	9	9.00000	0.00000	8.99862	0.15707	8.99451	0.31410	9	
15	1	0.99999	0.00436	0.99976	0.0218 I	0.99922	0.03925	1	
	2	1.99998	0.00872	1.99952	0.04363	1.99845	0.0785 I	2	
	3	2.99997	0.01308	2.99923	0.06544	2.99768	0.11777	3	
	4	3.99995	0.01745	3.99904	0.08725	3.99591	0.15703	4	
	5	4.99995	0.02181	4.9988 I	0.10907	4.99614	0． 19629	5	45
	6	5.99994	0.02617	5.99857	0.13089	5.99537	0.23555	6	
	7	6.99993	0.03054	6.99833	0.15270	6.99460	0.27481	7	
	8	7.99992	0.03490	7.99809	0.17452	7.99383	0.31407	8	
	9	8.99991	0.03926	8.99785	0.19633	8.99306	0.35333	9	
30	1	0.99996	0.00872	0.99965	0.02617	0.99904	0.04361	1	
	2	1.99992	0.01745	1.99931	0.05235	1.99809	0.08723^{-}	2	
	3	2.99988	0.02617	2.99897	0.07853	2.99714	－． 13085	3	
	4	3.99984	0.03490	3.99862	0.10470	3.99619	0.17447	4	
		4.99981	0.04363	4.99828	0.13088	4.99524	0.21809	5	30
	6	5.99977	0.05235	5.99794	0.15706	5．99428	0.26171	6	
	7	6.99973	0.06108	6.99760	0.18323	6.99333		7	
	8	7.99969	0.06981	7.99725	0.2094 I	7.99238	0.34895	8	
	9	8.99965	0.07853	8.99691	0.23559	8.99143	0.39257	9	
45	1	0.99991	0.01308		0.03053	0.99884		1	
	2	I． 99982	0.02617	1.99906	0.06107	1.99769	0.09595	2	
	3	2.99974	003926	2.99860	0.09161	2.99654	0.14393	3	
	4	3.99955	0.05235	3.99813	0．12215	3.99539	－．19191	4	
	5	4.99957	0.06544	4.99766	0.15269	4.99424	$0.239^{\circ} 9^{\prime}$	5	15
	6	5.99948	0.07853	5.99720	0.18323	5.99309	0.28786	6	
	7	6.99940	0.09162	6.99673	0.21376	6.99193	0.33584	7	
	8	7.9993 ［	0.10471	7.99626	0.24430	7.99078	0.38382	8	
	9	8.99922	0.11780	8.99580	0.27484	8.98963	0.43180	9	
条 景		Dep．	Lat．	Dep．	Lat．	Dep．	Lat．		
	¢	89°		88°		87°		$\stackrel{8}{8}$	雚

Smithsonian Tables．

DIFFERENCES OF LATITUDE AND DEPARTURE．－CONTINUED．

	$$	3°		4°		5°			
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
0	1	0.99863	0.05233	0.99756	0.06975	0．996i9	0.08715	1	
	2	1.99726	0．10467	1.99512	0.13951	1.99238	0．17431	2	
	3	2.99589	0.15700	2.99269	0.20926	2.9885^{8}	0.26146	3	
	4	3.99452	0.20934	3.99025	0.27902	3.98477	0.34862	4	
	5	4.99315	0.26168	4.98782	0.34878	4.98097	0.43577	5	60
	6	5.99178	0.31401	5.98538	0.41853	5.97716	0.52293	6	
	8	6.99041	0.36635	6.98294	0.48829	6.97336	0.61008	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	7.98904	0.41868	7.98051	0.55805	7.96955	0.69724	8	
	9	8.98767	0.47102	8.97807	0.62780	8.96575	0.78440	9	
15	1	0.99839	0.05669	0.99725	0.07410	0.99580	0.09150	1	
	2	1．99678	0.11338	1.99450	0.14821	1.99160	0.18300	2	
	3	2.99517	0.17007	2.99175	0.22232	2.98741	0.27450	3	
	4	3.99356	0.22677	3.98900	0.29643	3.98321	0.36600	4	
	5	4.99195	0.28346	4.98625	0.37054	4.97902	0.45750	5	45
	6	5.99035	0.34015	5.98350	0.44465	5.97482	0.54900	6	
	7	6.98874	0.39684	6.98075	0.51875	6.97063	0.64051	7	
	8	7.98713	0.45354	7.97800	0.59286	7.96643	0.73201	8	
	9	8.98552	0.51023	8.97525	0.66697	8.96224	0.82351	9	
30	1	0.99813	0.06104	0.99691	0.07845	0.99539		1	
	2	1.99626	0.12209	1.99383	0.15691	1.99079	0.19169	2	
	3	2.99440	0.18314	2.99075	0.23537	2.98618	0.28753	3	
	4	3.99253	0.24419	3.98766	0.31383	3.98158	0.38338	4	
	5	4.99067	0.30524	4.98458	0.39229	4.97698	0.47922	． 5	30
	6	5.98880	0.36629	5.98150	0.47075	5.97237	0.57507	6	
	8	6.98694	0.42733	6.97842	0.54921	6.96777	0.67092	7	
	8	7.98507	0.48838	7.97533	0.62767		0.76676	8	
	9	8.9832 I	0.54943	8.97225	0.70613	8.95856	0.8626 I	9	
45	1	0.99785	0.06540	0.99656	0.08280	0.99496	0.10018	1	
	2	1.9957 I	0.13080	1.99313	0.16561	1.98993	0.20037	2	
	3	2.99357	0.19620	2.98969	0.24842	2.98490	0.30056	3	
	4	3.99143	0.26161	3.98626	0.33123	3.97987	0.40075	4	
	5	4.98929	0.32701	4.98282	0.41404	4.97484	0.50094	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	15
	6	5.98715	0.39241	5.97939	0.49684	5.96981	0.60112	6	
	7	6.98501	0.45782	6.97595	0． 57965	6.96477	0.70131	7	
	8	7.98287	0.52322	7.97252	0.66246	7.95974	0.80150	8	
	9	8.98073	0． 58862	8.96908	0.74527	8.95471	0.90169	9	
$\begin{aligned} & \text { 总 } \\ & \text { 号 } \\ & \text { ? } \end{aligned}$		Dep．	Lat．	Dep．	Lat．	Dep．	Lat．		各
		86°		85°		84°			

Smithsonian Tables．

TRAVERSE TABLE，
DIFFERENCES OF LATITUDE AND DEPARTURE．－CONTINUED．

$\begin{aligned} & \dot{\mathbf{y}} \\ & \text { 岂 } \\ & \text { 穻 } \end{aligned}$	$\begin{aligned} & \text { 若 } \\ & \text { H } \\ & \text { 忽 } \end{aligned}$	6°		$7{ }^{\circ}$		8°			$\begin{aligned} & \text { 发 } \\ & \underbrace{E}_{B} \end{aligned}$
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
\bigcirc	1	0.99452	0.10452	0.99254	0.12186	0.99026	0.13917	1	
	2	1.98904	0.20905	1.98509	0.24373	1．98053	0.27834	2	
	3	2.98356	0.3135^{8}	2.97763	0.36560	2.97080	0.41751	3	
	4	3.97808	0.41811	3.97018	0.48747	3.96107	0.55669	4	
	5	4.97261	0.52264	4.96273	0.60934	4.95134	0.69586	5	60
	6	5.96713	0.62717	5.95519	0.73121	5.94160	0.83503	6	
	7	6.96165	0.73169	6.94782	0.85308	6.93187	0.97421	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	7.95617	0.83622	7.94038	0.97495	7.92214	1.11338	8	
	9	8.95069	0.94075	8.93291	1.09682	8.91241	I． 25255	9	
15	1	0.99405	0.10886	0.99200	0.12619	0.98965	0.14349	1	
	2	1．98811	0.21773	1.98400	0.25239	1.97930	0.28698	2	
	3	2.98216	0.32660	2.97601	0.37859	2.96895	0.43047	3	
	4	3.97622	0.43546	3.96801	0.50479	3.95860	0.57397	4	
	5	4.97028	0.54433	4.96002	0.63099	4.94825	0.71746	5	45
	6	5.96433	0.65320	5.95202	0.75719	5.93790	0.86095	$\stackrel{\breve{6}}{ }$	
	7	6.95839	0.76206	6.94403	0.88339	6.92755	1.00444	7	
	8	7.95245	0.87093	7.93603	1.00959	7.91721	1．14794	8	
	9	8.94650	0.97980	8.92804	1．1 3579	8.90686	1.29143	9	
30	1	0.99357	0.11320	0.99144	0.13052	0.98901	0.14780	1	
	2	1.98714	0.22640	1.98288	0.26105	1.97803	0.29561	2	
	3	2.9807 I	0.33960	2.97433	0.39157	2.96704	0.44342	3	
	4	3.97428	0.45281	3.96577	0.52210	3.95606	0.59123	4	
	5	4.96786	0.56601	4.95722	0.65263	4.94508		5	30
	6	5.96143	0.67921	5.94866	0.78315	5．93409	0.88685	6	
	7	6.95500	0.79242	6.94011	0.91368	6.92311	1.03466	7	
	8	7.94857	0.90562	7.93155	1.04420	7.91212	$\text { I. } 18247$	8	
	9	8.94214	1.01882	8.92300	1.17473	8.90114	1.33028	9	
45	1	0.99306	0.11753	0.99086	0.13485	0.98836		1	
	2	1.98613	0.23507	1.98173	0.26970	1．97672	0.30424	2	
	3	2.97920	0.35261	2.97259	0.40455	2.96508	0.45637	3	
	4	3.97227	0.47014	3.96346	0.53940	3.95344	0.60849	4	
	5	4.96534	0.58768	4.95432	0.67425	4.94180	0.76061	5	15
	6	5.95841	0.70522	5.94519	0.80910	5.93016	0.91274	6	
	7	6.95147	0.82276	6.93606	0.94395	6.91853	1． 06486	7	
	8	7.94454	0.94029	7.92692	1.07880	7.90689	1． 21698	8	
	9	8.93761	1.05783	8.91779	I． 21365	8.89525	1．36911	9	
条落菏		Dep．	Lat．	Dep．	Lat．	Dep．	Lat．		录
		83°		82°		81°			

Smithsonian Tables．

TRAVERSE TABLE．
DIFFERENGES OF LATITUDE AND DEPARTURE．－Continued．

$\begin{aligned} & \text { 駕 } \\ & \text { 号 } \end{aligned}$		9°		10°		11°			$\begin{aligned} & \text { 霛 } \\ & \stackrel{y y y y}{\mid c} \end{aligned}$
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
0	1	0.98768	0.15643	0.98480	0.17364	0.98162	0.19081	1	
	2	1.97537	0.31286	1.96961	0.34729	1.96325	0.38162	2	
	3	2.96306	0.46930	2.95442	0.52094	2.94488	0． 57243	3	
	4	3.95075	0.62573	3.93923	0.69459	3.92650	0.76324	4	
	5	4.93844	0.78217	4.92403	0.86824	4.90813	0.95405	5	60
	6	5.92612	0.93860	5.90884	1.04188	5.88976	I． 14486	6	
	7	6.9138 I	1.09504	6.89365	1.21553	6.87 I 39	1.33566	7	
	8	7.90150	1.25147	7.87846	1.38918	7.85301	1.52648	8	
	9	8.88919	1．40791	．8．86327	1.56283	8.83464		9	
15	1	0.98699	0.16074	0.98404	0.17794	0.98078	0.19509	1	
	2	I． 97399	0.32148	r． 96808	0.35588	1．96157	0.39018	2	
	3	2.96098	0.48222	2.95212	0.53383	2.94235	0.58527	3	
	4	3.94798	0.64297	3.93616	0.71177	3.92314	0.78036	4	
	5	4.93498	0.8037 I	4.92020	0.88971	4.90392	0.97545	5	45
	6	5.92197	0.96445	5.90424	1.06766	5.8847 I	I． 17054	6	
	7	6.90897	1.12519	6.88828	1.24560	6.86549	I． 36563	7	
	8	7.89597	1.28594	7.87232	I． 42354	7.84628	1．56072	8	
	9	8.88296	I． 44668	8.85636	I．60149	8.82706	1.75581	9	
30	1	0.98628	0.16504	0.98325	0.18223	0.97992	0.19936	1	
	2	1． 97257	0.33009	1.96650	0.36447	r． 95984	0.39873	2	
	3	2.95885	0.49514	2.94976	0.54670	2.93977	0.59810	3	
	4	3.94514	0.66019	3.93301	0.72894	3.91969	0.79747	4	
	5	4.93142	0.82523	4.91627	0.91117	4.89962	0.99683	5	30
	6	5.91771	0.99028	5.89952	1.09341	5.87954	1.19620	6	
	7	6.90399	I． 55533	6.88278	1.27564	6.85947	1． 39557	7	
	8	7.89028	1． 32038	7.86603	1．45788	7.83939	1.59494	8	
	9	8.87657	1.48542	8.84929	I． 6401 I	8．81932	1.79431	9	
45	1			0.98245	0.18652	0.97904	0.20364	1	
	1	1．97 III	0．33870	1.96490	0.37304	1.95809	0.40728	2	
	3	2.95666	0.50805	2.94735	0.55957	2.93713	0.61092	3	
	4	3.94222	0.67740	3.92980	0.74609	3.91618	0.81456	4	
	5	4.92778	0.84675	4.91225	0.93262	4.89522	1.01820	5	15
	6	5.91333	1.01610	5.89470	I．II914	5.87427	I． 22185	6	
	7	6.89889	1.18545	6.87715	1． 30566	6.85331	1.42549	7	
	8	7.88444	1.35480	7.85960	1． 49219	7.83236	1．62913	8	
	9	8.87000	1．52415	8.84205	1.67871	8.81140	1．83277	9	
条	$\begin{aligned} & \underset{0}{6} \\ & \text { W } \\ & \text { H } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Dep．	Lat．	Dep．	Lat．	Dep．	Lat．		鸪
		80°		79°		78°			

Smithsonian Tables．

Table 9.
TRAVERSE TABLE.
DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

		12°		13°		14°			$\begin{aligned} & \dot{0} \\ & \stackrel{y}{U} \\ & \text { B } \end{aligned}$
		Lat.	Dep.	Lat.	Dep.	Lat.	Dep.		
\bigcirc	1	0.97814	0.20791	0.97437	0.22495	0.97029	0.24192	1	
	2	1.95629	0.41582	I. 94874	0.44990	1.94059	0.48384	2	
	3	2.93444	0.62373	2.92311	0.67485	2.91088	0.72576	3	
	4	3.91259	0.83164	3.89748	0.89980	3.88118	0.96768	4	
	5	4.89073	I. 03955	4.87185	1.12475	4.85147	1.20961	5	60
	6	5.86888	I. 24747	5.84622	1.34970	5.82177	1.45153	6	
	7	6.84703	1. 45538	6.82059	1. 57465	6.79206	1.69345	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	7.82518	1.66329	7.79496	1.79960	7.76236	1.93537	8	
	9	8.8033^{2}	1.87120	8.76933	2.02455	8.73266	2.17729	9	
15	1	0.97723	0.21217	0.97337	0.22920	0.96923	0.24615	1	
	2	I.95446	0.42435	I. 94675	0.45840	1.93846	0.49230	2	
	3	2.93169	0.63653	2.92013	0.68760	2.90769	0.73845	3	
	4	3.90892	0.84871	3.89351	0.91680	3.87692	0.98461	4	
	5	4.88615	1.06088	4.86689	1.14600	4.84615	1.23076	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	45
	6	5.8633^{8}	1.27306	5.84027	1.37520	5.81538	1.47691	6	
	7	6.84061	1.48524	6.81365	1.60440	6.7846 I	1.72307	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	7.81784	1. 69742	7.78703	1. 83360	7.75384	I. 96922	8	
	9	8.79507	1.90959	8.7604 I	2.06280	8.72307	2.21537	9	
30	1	0.97629	0.21644	0.97237	0.23344	0.96814	0.25038	1	
	2	1.95259	0.43288	1.94474	0.46689	1.93629	0.50076	2	
	3	2.92888	0.64932	2.917 II	0.70033	2.90444	0.75114	3	
	4	3.90518	0.86576	3.88948	0.93378	3.87259	I. 00152	4	
		4.88148	1.08220	4.86185	I.16722	4.84073	1.25190	5	30
	6	5.85777	1.29864	5.83422	1. 40067	5.80888	1.50228	6	
	7	6.83407	1.51508	6.80659	I. 6341 I	6.77703	1.75266	7	
	8	7.81036	1.73152	7.77896	1. 86756	7.74518	2.00304	8	
	9	8.78666	1. 94796	8.75133	2.10100	8.71332	2.25342	9	
45	1	0.97534	0.22069	0.97134	0.23768	0.96704	0.25460	1	
	2	1.95068	0.44139	1.94268	0.47537	1.93409	0.50920	2	
	3	2.92602	0.66209	2.91402	0.71305	2.90113	0.76380	3	
	4	3.90136	0.88278	3.88536	0.95074	3.86818	1.01840	4	
	5	4.87671	I. 10348	4.85671	I. 18843	4.83523	1.27301	5	15
	6	5.85205	1.32418	5.82805	I. 42611	5.80227	1.52761	6	
	7	6.82739	1. 54488	6.79939	1.66380	6.76932	1.78221	7	
	8	7.80273	1. 76557	7.77073	I.90148	7.73636	2.03681	8	
	9	8.77808	I. 98627	8.74207	2.13917	8.70341	2.29141	9	
	$\begin{aligned} & \underset{W}{\theta} \\ & \text { 品 } \\ & 0 \end{aligned}$	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.		客
		77°		76°		75°			

TRAVERSE TABLE，
Table 9.
DIFFERENCES OF LATITUDE AND DEPARTURE．－CONTINUED．

$\begin{aligned} & \text { 要 } \\ & \text { H. } \\ & \text { Hix } \end{aligned}$		15°		16°		17°			
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
\bigcirc	1	0.96592	0.25881	0.96126	0.27563	0.95630	0.29237	1	
	2	1.93185	0.51763	1．92252	0.55127	1.91260	0.58474	2	
	3	2.89777	0.77645	2.88378	0.82691	2.86891	0.877 II	3	
	4	3.86370	1.03527	3.84504	1．10254	3.8252 I	I．16948	4	
	5	4.82962	1.29409	4.80630	I． 37818	4.78 I 52	I． 46185	5	60
	6	5.79555	1．5529I	5.76757	1.65382	5.73782	1.75423	6	
	7	6.76148	1.81173	6.72883	1.92946	6.69413	2.04660	7	
	8	7.72740	2.07055	7.69009	2.20509	7.65043	2.33897	8	
	9	8.69333	2.32937	8.65135	2.48073	8.60674	2.63 I 34	9	
15	1	0.96478	0.26303	0.96005	0.27982	0.95502	0.29654	1	
	2	1.92957	0.52606	1.92010	0.55965	1.91004	0.59308	2	
	3	2.89436	0.78909	2.88015	0.83948	2.86506	$0.88 \mathrm{g62}$	3	
	4	3.85914	1.05212	3.84020	1.11931	3.82008	1.18616	4	
	5	4.82393	I．3I5I5	4.80025	1.39914	4.77510	1． 48270	5	45
	6	5.78872	1．57818	5.76030	1.67897	5.73012	1.77924	6	
	7	6.75351	1.84121	6.72035	1.95880	6.68514	2.07579	7	
	8	7.71829	2.10424	7.68040	2.23863	7.64016	2.37233	8	
	9	8.68308	2.36728	8.64045	2.51846	8.59518	2.66887	9	
30	1	0.96363	0.26723	0.95882	0.28401	0.95371		1	
	2	1.92726	0.53447	1.91764	0.56803	1.90743	0.60141	2	
	3	2.89089	0.80171	2.87646	0.85204	2.86115	0.90211	3	
	4	3.8545^{2}	1.06895	3.83528	I． 13606	3．81486	1.20282	4	
		4.81815	1． 33619	4.79410	I． 42007	4.76858		5	30
	6	5.78178	1． 60343	5.75292	1.70409	5.72230	1.80423	6	
	7	6.7454 I	1． 87066	6.71174	1．98810	6.67601	2.10494	7	
	8	7.70904	2．13790	7.67056	2.27212	7.62973		8	
	9	8.67267	2.40514	8.62938	2.55613	8.58345	2.70635	9	
45	1	0.96245	0.27144	0.95757	0.28819	0.95239	0.30486	1	
	2	1.9249 I	0.54288	1.91514	0.57639	1.90479	0.60972	2	
	3	2.88736	0.81432	2.87271	0.86458	2.85718	0.91459	3	
	4	3.84982	1.08576	3.83028	1．15278	3.80958	1．21945	4	
		4.81227	1.35720	4.78785	1． 44098	4.76197	1.52432	5	15
	6	5.77473	1.62864	5.74542	1． 72917	5.71437	1.82918	6	
	7	6.73718	1.90008	6.70299	2.01737	6.66677	2.13405	7	
	8	7.69964	2.17152	7.66057	2.30557	7.61916	2.43891	8	
	9	8.66209	2.44296	8．61814	2.59376	8.57156	2.74377	9	
条薷		Dep．	Lat．	Dep．	Lat．	Dep．	Lat．	$\begin{aligned} & \text { 苞 } \\ & \text { B } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	苞
		74°		73°		72°			

Smithsonian Tables．

Table 9.
TRAVERSE TABLE.
DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

		18°		19°		20°			
		Lat.	Dep.	Lat.	Dep.	Lat.	Dep.		
-	1	0.95105	0.30901	0.94551	0.32556	0.93969	0.34202		
	2	1.90211	0.61803	1.89103	0.65113	1.87938	0.68404	2	
	3	2.85316	0.92705	2.83655 3.78207	0.97670	2.81907	I. I I. 368008	4	
	4	3.80422 4.75528	I. 23606 I. 54508	3.78207 4.72759	1.30227 1.62784	3.75877 4.69846	1.36808 1.71010	4	60
	6	5.70633	I.85410	5.67311	1.95340	5.63815	2.05212	6	
	7	6.65739	2.16311	6.61863	2.27897	6.57784	2.39414 2.73616	7	
	8	7.60845	2.47213	7.56414 8.50966	2.60454 2.93011	7.51754 8.45723	$\begin{aligned} & 2.73616 \\ & 3.07818 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	
	9	8.55950	2.78115	8.50966	2.93011	8.45723			
15	1	0.94969	0.31316	0.94408	0.32969	0.93819	0.34611	1	
	2	1. 89939	0.62632	1.88817	0.65938	I. 876388	0.69223	2	
	3	2.84909	0.93949	2.83226	0.98907	2.81457 3.7576	1.03835 I. 38446	3	
		3.79879 4.74849	1.25265 1.56581	3.77635 4.72044	1.31876 I. 64845	3.75276 4.69095	1.38446 1.73058	4 5 5	45
	6	4.69819	1. 8.7898	5.66453	1.97814	5.62914	2.07670	6	4
	7	6.64789	2.19214	6.60862	2.30783	6.56733	2.44281	7	
	8	7.59759 8.54729	2.50531 2.81847	7.55271 8.49680	2.63752 2.96721	7.50553 8.44372	2.76893 3.11505	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	
	9	8.54729	2.81847	8.49680	2.96721	8.4437^{2}	3.11505		
30	1	0.94832	0.31730	0.94264	0.33380	0.93667	0.35020	1	
	2	1.89664	0.63460	1.88528	0.66761	1.87334	0.70041	2	
	3	2.84497	0.95191	2.82792 377056	1.00142	${ }^{2} 8.81001$	1.05062 T.40082	3	
	4	3.79329	1.26921	3.77056	1.33522	3.74668	1.40082	4	
	5	${ }^{4.74161}$				4.68336		5	30
	6		1.90382 2.22113	5.65584 6.59849	2.00284 2.3364	${ }^{5.62003}$	2.10124 2.45145	6	
	7	6.63826 7.58658	2.22113	6.59849	2.33664	6.55670	2.45145 2.80165	7	
	9	7.58658 8.53491	2.53843 2.85574	7.54113 8.48377	2.67045 3.00426	8.43004	3.15186	9	
45									
								1	
	2	1.89386	0.64287	1.88235	0.37583	1.87027 2.8054	0.70858	3	
	3 4 4	2.84079 3.78772	0.96431 1.28575	2.82352 3.76470	1.01375 1. 35166	2.80540 3.74054	1.06287 1.41716	3 4 4	
	5	4.73465	1.60719	4.70588	т. 68958	4.67567	1.77145	5	15
	6.	5.68158	1.92863	5.64705	2.02750	5.61081	2.12574	6	
	7	6.62851	2.25007	6.58823	2.36541		2.48003	7	
	8		2.57151 2.89295	7.52940 8.47058	2.70333 3.04125	7.48108	2.83432 3.18865	8	
		8.52237	2.89295	8.47058	3.04125	8.41621	3.18861	9	
	불:000	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.		当
		71°		70°		69°			

Smithsonian Tables.

TRAVERSE TABLE.
DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

		21°		22°		23°			
		Lat.	Dep.	Lat.	Dep.	Lat.	Dep.		
0	1	0.93358	0.35836	0.92718	0.37460	0.92050	0.39073	1	
	2	1.86716	0.71673	1. 85436	0.74921	1.84100	0.78146	2	
	3	2.80074	1.07510	2.78155	1.12381	2.76151	1.17219	3	
	4	3.73432	1.43347	3.70873	1.49842	3.68201	1.56292	4	
	5	4.66790	1.79183	4.63591	1.87303	4.60252	1.95365	5	60
	6	5.60148	2.15020	5.56310	2.24763	5.52302	2.34438	6	
	7	6.53506	2.50857	6.49028	2.62224	6.44353	2.73511	7	
	8	$7 \cdot 46864$	2.86694	7.41747	2.99685	$7 \cdot 36403$	3.12584	8	
	9	8.40222	3.22531	8.34465	3.37145	8.28454	3.51657	9	
15	1	0.93200	0.36243	0.92554	0.37864	0.91879		1	
	2	1.86401	0.72487	1.85108	0.75729	1.83758	0.78948	2	
	3	2.79602	1.08731	2.77662	1.13594	2.75637	1.18423	3	
	4	3.72803	1.44975	3.70216	I. 51459	3.67516	1. 57897	4	
	5	4.66004	1.81219	4.62770	1.89324	4.59395	1. 97372	5	45
	6	5.59204	2.17462	5.55324	2.27189	5.51274	2.36846	6	
	7	6.52405	2.53706	6.47878	2.65054	6.43153	2.76320	7	
	8	7.45606	2.89950		3.02918	7.35032	3.15795	8	
	9	8.38807	3.26194	8.32986	3.40783	8.26912	$3 \cdot 55269$	9	
30	1	0.93041	0.36650	0.92388	0.38268	0.91706	0.39874	1	
	2	I. 86083	0.73300	1.84776	0.76536	1.83412	0.79749	2	
	3	2.79125	1.09950	2.77164	1.14805	2.75118	I. 19624	3	
	4	3.72167	1.46600	3.69552	1. 53073	3.66824	1. 59499	4	
	5	4.65208	1.83250	4.61940	1.91341	4.58530	1.99374	$\frac{5}{6}$	30
	6	5.58250	2.19900	5.54328	2.29610	$5 \cdot 502.36$	2.39249	6	
	7	6.51292	2.56550	6.46716	2.67878	6.41942	2.79124	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	7.44334	2.93200	7.39104	3.06146	$7 \cdot 33648$	3.18999	8	
	9	8.37375	3.29851	8.31492	3.44415	8.25354	3.58874	9	
45	1	0.92881	0.37055	0.92220	0.38671	0.91531	0.40274	1	
	2	1.85762	0.74111	1. 84440	0.77342	1.83062	0.80549	2	
	3	2.78643	1.11167	2.76660	1.16013	2.74593	1.20824	3	
	4	3.71524	I. 48222	3.68880	1. 54684	3.66124	1.61098	4	
	5	4.64405	1. 85278	4.61100	I. 93355	4.57655	2.01373	5	I 5
	6	5.57286	2.22334	5.53320	2.32026	5.49 I 86	2.41648	6	
	7	6.50167	2.59390	6.45540	2.70697	6.40718	2.81922	7	
	8	7.43048	2.96445	7.37760	3.09368	7.32249	3.22197	8	
	9	8.35929	3.33501	8.29980	3.48039	8.23780	3.62472	9	
3E苞		Dep.	Lat.	Dep.	Lat.	Dep.	Lat.		录
		68°		67°		66°			

8mithsonian Tables.

TABLE 9.
TRAVERSE TABLE．
DIFFERENCES OF LATITUDE AND DEPARTURE，－CONTINUED．

$\begin{aligned} & \dot{8} \\ & \stackrel{y}{t} \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & \dot{\text { U }} \\ & \text { Hy } \\ & \text { H. } \\ & \text { H. } \end{aligned}$	24°		25°		26°			$\frac{\dot{\mathscr{y}}}{\underset{y}{y}}$
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
0	1	0.91354	0.40673	0.90630	0.42261	0.89879	0.43837	1	
	2	1.82709	0.81347	1.81261	0.84523	1.79758	0.87674	2	
	3	2.74063	1.22020	2.71892	1.26785	2.69638	1.31511	3	
	4	3.65418	1． 62694	3.62523	1.69047	3.59517	1.75348	4	
	5	4.56772	2.03368	4.53153	2.11309	4.49397	2.19185	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	60
	6	5.48127	2.44041	5.43784	2.53570	$5 \cdot 39276$	2.63022	6	
	7	6.39481	2.84715	6.34415	2.95832	6.29155	3.06859	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	$7 \cdot 30836$	3.25389	7.25046	3.38094	7.19035	3.50696	8	
	9	8.22190	3.66062	8．15677	3.80356	8.08914	3.94533	9	
15	1	0.91176	0.41071	0.90445	0.42656	0.89687	0.44228	1	
	2	r． 82352	0.82143	1.80891	0.85313	1.79374	0.88457	3	
	3	2.73528	1.23215	2.71336	1.27970	2.69061	1.32686	3	
	4	3.64704	1.64287	3.61782	1.70627	3.58749	1.76915	4	
	5	4.5588 I	2.05359	4.52227	2.13284	4.48436	2.21144	$\frac{5}{6}$	45
	6	$5 \cdot 47057$	2.46431	5.42673	2.55941	5．38123	2.65373	6	
	7	6.38233	2.87503	6.33118	2.98598	6.27810	3.09602	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	7.29409	3.28575	7.23564	3.41254	7.17498 8.07185	3.53830	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	
	9	8.20585	3.69647	8.14009	3.83911	8.07185		9	
30	1	0.90996	0.41469	0.90258	0.43051	0.89493	0.44619	1	
	2	1.81992	0.82938	1.80517	0.86102	1.78986	0.89239	2	
	3	2.72988	1.24407	2.70775	1.29153	2.68480	1.33859	3	
	4	3.63984	1.65877	3.61034	1.72204	3.57973	1.78479	4	
		4.54980	2.07346	4.51292	2.15255	4.47467		$\begin{aligned} & 5 \\ & 6 \end{aligned}$	30
	6	5.45976	2.48815	5.41551	2.58306	5．36960	2.67718	$\overline{6}$	
	7	6.36972	2.90285	6.31809	3.01357	6.26454	3.12338	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	7.27969	3.31754	7.22068	3.44408	7.15947	3．56958	8	
	9	8.18965	3.73223	8.12326	3.87459	8.05440	4.01578	9	
45	1	0.90814	0.41866	0.90069	0.43444	0.89297	0.45009	1	
	2	1.81628	0.83732	1．801 39	0.86889	1.78595	0.90019	2	
	3	2.72442	1.25598	2.70209	1.30333	2.67893	1.35029	3	
	4	3.63257	1． 67464	3.60279	1.73778	3.57191	1.80039	4	
	5	4.54071	2.09330	4.50349	2.17222	4.46489	2.25049	5	15
	6	5.44885	2.51196	5.40418	2.60667	5.35787	2.70059	6	
	7	6.35700	2.93062	6.30488	3.04111	6.25085	3.15068	7	
	8	7.26514	3.34928	7.20558	3.47556	7.14383	3.60078	8	
	9	8.17328	3.76794	8.10628	3.91000	8.0368 I	4.05088	9	
	$\begin{aligned} & \underset{W}{H} \\ & \text { O } \\ & \text { Hen } \\ & 0 \end{aligned}$	Dep．	Lat．	Dep．	Lat．	Dep．	Lat．	式	军
		65°		64°		63°			

Smithsonian Tables．
differences of latitude and departure. - Continued.

		27°		28°		29°		烒	
		Lat.	Dep.	Lat.	Dep.	Lat.	Dep.		
0	1	0.89100	0.45399	0.88294	0.46947	0.87462	0.4848 I	1	
	2	1.78201	0.90798	1.76589	0.93894	1.74924	0.96962	2	
	3	2.67301	1.36197	2.64884	1.40841	2.62386	I. 45443	3	
	4	3.56402	1.81596	3.53179	1.87788	3.49848	I. 93924	4	
	5	4.45503 5.34603	2.26995 2.72394	4.41473 5.29768	2.34735 2.81682	+4.37310 5.24772	2.42405 2.90886	5	60
	7	6.23704	3.17793	6.18063	3.28630	6.12234	3.39367	7	
	8	7.12805	3.63193	7.06358	3.75577	6.99695 (i	3.87848	8	
	9	8.01905	4.08591	7.94652	4.22524	7.87156	4.36329	9	
15	1	0.88901	0.45787	0.88089	0.47332	0.87249	0.48862	1	
	2	1.77803	0.91574	1.76178	0.94664	1.74499	0.97724	2	
	3	2.66705	I. 37362	2.64267	1.41996	2.61748	1.46566	3	
	4	3.55606	1.83149	3.52356	1.89328	3.48998	I. 95448	4	
	5	4.44508 5.33410	2.28937 2.74724	4.40445 5.28534	2.36660 2.83992	4.36248 5.23497	2.44310 2.93172 3.2	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	45
	7 7	5.33410 6.22311	2.74724 3.20511	5.28534 6.16623	2.83992 3.31324	5.23497 6.10747	2.93172 3.42034	7	
	8	7.11213	3.66299	7.04712	3.78656	6.97996	3.90896	8	
	9	8.00115	4.12086	7.92801	4.25988	7.85246	4.39759	9	
30	1	0.88701	0.46174	0.87885	0.47715	0.87035		1	
	2	1.77402	0.92349	1.7.7563	0.95431	1.74071	0.98484	2	
	3	2.66103	1. 38524	2.63645	1.43147	2.61106	1.47727	3	
	4	3.54804	1. 84699	3.51526	1.90863	3.48142	1.96969	4	
							2.46211 2.95454	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	30
	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	5.32206 6.20907	2.77049 3.23224	5.27290 6.15171	2.86295 3.34011 3	5.22213 6.09248	2.95454 3.44696	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	
	7	6.20907 7.09608	3.23224 3.69398	6.15171 7.03053	3.34011 3.81727	6.09248 6.96284	3.44696 3.93938	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	7.09608 7.98309	3.69398 4.15573	7.03053 7.90935	3.81727 4.29442	6.98284 7.83320	3.9393818 4.431	9	
45	1	0.88498	0.46561	0.87672	0.48098	0.86819	0.49621	1	
	2	1.76997	0.93122	1.75345	0.96197	1.73639	0.99243	2	
	3	2.65496	I. 39684	2.63018	I. 44296	2.60459	I. 48864	3	
	4	3.53995	1.86245	3.50690	I.92395	3.47279	1. 98486 $\mathbf{2} 48108$	4	
		${ }^{4.42493}$	2.32807 2.79368	${ }^{4.38363}$			2.48108	5	15
	6	5.30992 6.19491 1.0799	2.79368 3.25930 3	5.26036 6.13708 .8	2.88593 3.36692	5.20919 6.07739	$\begin{aligned} & 2.97729 \\ & 3.47355 \end{aligned}$	6	
	7	6.19491 7.07990	3.25930 3.7249 I	6.13708 7.01381	3.36692 3.84791	6.07739 6.94599	3.4735 I 3.96973	7	
	9	7.96488	4.19053	7.89054	4.32889	7.81378	4.46594	9	
		Dep.	Lat.	Dep.	Lat.	Dep.	Lat.		当
		62°		61°		60°			

Smithsonian Tables.

Table 9．
TRAVERSE TABLE，
DIFFERENCES OF LATITUDE AND DEPARTURE．－CONTINUED．

		30°		31°		32°			気
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
\bigcirc	1	0.86602	0.50000	0.85716	0.51503	0.84804	0.52991	1	
	2	1.73205	1.00000	1.71433	1.03007	1.69609	1.05983	2	
	3	2.59807	1.50000	2.57150	1.54511	2.54414	1． 58975	3	
	4	3.46410	2.00000	3．42866	2.06015	3.39219	2.11967	4	
	5	4.33012	2.50000	4.28583	2.57519	4.24024	2.64959	5	60
	6	5.19615	3.00000	5.14300	3：09022	5.08828	3.17951	6	
	7	6.06217	3.50000	6.00017	3.60526	5.93633	3.70943	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	6.92820	4.00000	6.85733	4.12030	6.78438	4.23935	8	
	9	7.79422	4.50000	7.71450	4.63534	7.63243	4.76927	9	
15	1	0.86383	0.50377	0.85491	0.51877	0.84572	0.53361	1	
	2	1.72767	1.00754	1.70982	1.03754	1.69145	1.06722	2	
	3	2.59150	1.51132	2.56473	1.55631	2.53718	1.60084	3	
	4	3.45534	2.01509	3.41964	2.07509	3.38291	2.13445	4	
	5	4.31917	2.51887	4.27456	2.59386	4.22863	2.66807	5	45
	6	5.18301 6.04684	3.02264	5.12947	3．11263	5.07436	3.20168	6	
	7	6.04684	3.52641	5.98438	3.63141	5.92009	3.7353°	7	
	8	6.91068	4.03019	6.83929	4.15018	6.76582	4.26891	8	
	9	7.77451	4.53396	7.69420	4.66895	7．61 155	4.80253	9	
30	1	0.86162	0.50753	0.85264	0.52249	0.84339	$0.5373{ }^{\circ}$	1	
	2	1.72325	1.01507	1．70528	1.04499	1.68678	1.07460	2	
	3	2.58488	1．52261	2.55792	1.56749	2.53017	1.61190	3	
	4	3.44651	2.03015	3.41056	2.08999	3.37356	2.14920	4	
	5	4.30814	2.53769	4.26320	2.61249	4.21695	2.68650	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	30
	6	5.16977	3.04523	5.11584	3.13499	5.06034	3.22380	6	
	8	6.03140	3.55276	5.96948	3.65749	5.90373		7	
	8	6.89303	4.06030	$6.82 \mathrm{II2}$	4.17998	6.74713	4.29840	8	
	9	7.75466	4.56784	7.67376	4.70248	7.59052	4.83570	9	
45	1	0.85940	0.51129	0.85035	0.52621	0.84103	0.54097	1	
	2	1.71881	1.0225^{8}	1.70070	1.05242	1.68207	1.08194	2	
	3	2.57821	1.53387	2.55105	1.57864	2.52311	1.62292	3	
	4	3.43762	2.04517	3.40140	2．10485	3.36415	2.16389	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	
	5	4.29703	2.55646	4.25176	2.63107	4.20519	2.70487	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	15
	6	5.15643	3.06775	5.10211	3.15728	5.04623	3.24584	6	15
	7	6.01584	3.57905	5.95246	3.68349	5.88827	3.78682	7	
	8	6.87525	4.09034	6.8028 I	4.20971	6.72831	4.32779	8	
	9	7.73465	4.60163	7.65316	4.73592	7.56935	4.86877	9	
		Dep．	Lat．	Dep．	Lat．	Dep．	Lat．	$\begin{aligned} & \text { V} \\ & \stackrel{0}{0} \\ & \ddot{H} \\ & \overparen{¢} \end{aligned}$	$\begin{aligned} & \text { 条 } \\ & \text { 苞 } \\ & \text { 荡 } \end{aligned}$
		59°		58°		57°			

[^22]DIFFERENCES OF LATITUDE AND DEPARTURE，－CONTINUED．

	$\begin{aligned} & \dot{U} \\ & \text { Ü } \\ & \text { H } \\ & \stackrel{\mu}{n} \end{aligned}$	33°		34°		35°			
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
0	1	0.83867	0.54463	0.82903	0.55919	0.81915	0.57357	1	
	2	1.67734	1.08927	1.65807	1．11838	1.63830	1．14715	2	
	3	2.51601	1.63391	2.48711	1． 67757	2.45745	1.72072	3	
	4	$3 \cdot 35468$	2.17855	$3 \cdot 31615$	2.23677	3.27660	2.29430	4	
	5	4.19335	2.72319	4．14518	2.79596	4.09576	2.86788	5	60
	6	5.03202	3.26783	4.97422	3.35515	4.91491	3.44145	6	
	7	5.87069	3．81247	5.80326	3.91435	5.73406	4.01503	7	
	8	6.70936	4.35711	6.63230	4.47354	6.5532 I	4.58861	8	
	9	$7 \cdot 54803$	4.90175	7．46I 33	5.03273	$7 \cdot 37236$	5．16218	9	
15	1	0.83628	0.54829	0.82659	0.56280	0.81664	0.57714	1	
	2	1.67257	1.09658	1.65318	I．I 2560	1.63328	I． 5429	2	
	3	2． 50885	1.64487	2.47977	1.68841	2.44992	1．73143	3	
	4	$3 \cdot 34514$	2.19317	3.30636	2.25121	3.26656	2.30858	4	
	5	4.18143 5.01771	2.74146 3.28975	4.13295 4.95954	2.81402 3.37682	4.08320 4.89984	2.88572 3.46287	5	45
	6	5.01771	3.28975	4.95954	3.37682	4.89984 5.71649	3.46287 4.04001	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	
	7	5.85400	3.83805	5.78613	3.93963	5.71649	4.04001	7	
	8	6.69028	4.38634	6.61272	4.50243	6.533 I 3	4.61716	8	
	9	$7 \cdot 52657$	4.93463	$7 \cdot 43931$	5.06524	7.34977	5．19430	9	
30	1	0.83388	0.55193	0.82412	0． 56640	0.81411	0.58070	1	
	2	1.66777	1.10387	1.64825	1.13281	1.62823	1．16140	2	
	3	2.50165	1.6558 r	2.47237	1.69921	2.44234	1.74210	3	
	4	$3 \cdot 33554$	2.20774	3.29650	2.26562	3.25646	2.3228 r	4	
	5	4.16942	2.75968	4.12063	2.83203	4.07057	$2.9035 \mathrm{I}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	30
	6	5.0033 I 5.83720	$3.3 \mathrm{II62}$ 3.86355	4.94475 596888	3.39843	4.88469	3.4842 I	6	
	7	5.83720	3.86355	5.76888	3.96484	5.69880	4.06492 4.64562	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	8	6.67108	4.41549	6.59300	4.53124	6.51292	4.64562	8	
	9	$7 \cdot 50497$	4.96743	7－41713	5.09765	7.32703	5.22632	9	
45	1	0.83147	0.55557	0.82164	5．56999	0.81157	0.58425	1	
	2	1． 66294	1.15114	1.64329	I． 13999	1.62314	I．16850	2	
	3	2.49441	1.6667 I	2.46494	I．70999	2.43472	1.75275	3	
	4	$3 \cdot 32588$	2.22228	3.28658	2.27998	3.24629	2.33700	4	
	5	4.15735	2.77785	4.10823	2.84998	4.05787	2.92125	5	15
	6	4.98882	3.33342	4.92988	3.41998	4.86944	3．50550	6	
	7	5.82029	3.88899	5.75152	3.98997	5．68101	4.08975	7	
	8	6.65176	4.44456	6.57317	4.55997	6.49260	4.67400	8	
	9	7.48323	5.00013	7.39482	5．12997	7．30416	5.25825	9	
3易管		Dep．	Lat．	Dep．	Lat．	Dep．	Lat．		急
		56°		55°		54°			

Smithsonian Tables．

Table 9.
TRAVERSE TABLE．
DIFFERENCES OF LATITUDE AND DEPARTURE．－CONTINUED．

密		36°		37°		38°			$\begin{aligned} & \text { 氙 } \\ & \text { 品 } \\ & \text { 豆 } \end{aligned}$
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
0	1	0.80901	0.58778	0.79863	0.6018 I	0.78801	0.61566	1	
	2	1.61803	1.17557	1.59727	1.20363	1.57602	1.23 I 32	2	
	3	2.42705	1.76335	2.39590	1.80544	2.36403	1.84698	3	
	4	3.23606	2.35114	3.19454	2.40726	3.15204	2.46264	4	
	5	4.04508	2.93892	3.99317	3.00907	3.94005	3.07830	5	60
	6	4.85410	$3 \cdot 52671$	4.79181	3.61089	4.72806	3.69396	6	
	7	5.66311	4.11449	5.59044	4.21270	$5 \cdot 51607$	4.30963	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
	9	6.47213 7.2815	4.70228 5.29006	6.38908 7.18771	4.81452 5.41633	6.30408 7.09209	4.92529 5.54095	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	
15	1	0.80644	0.59130	0.79600	0.60529	1.78531	0.61909	1	
	2	1.61288	1．1826ı	1.59200	1.21058	I． 57063	1.23818	2	
	3	2.41933	1.77392	2.38800	r．81588	2.35595	1.85728	3	
	4	3.22577	2.36523	3.18400	2.42117	3.14126	2.47637	4	
	5	4.03222	2.95654	3.98001	3.02647	3.92658	3.09547	5	45
	6	4.83866	3.54785	4.77601	3.63176	4.71190	3.71456	6	
	7	5.64511	4.13916	5．57201	4.23705	5.49721	4.33365	8	
	8	6.45155	4.73047	6.36801	4.84235	6.28253	4.95275	8	
	9	7.25800	$5 \cdot 32178$	7．16401	$5 \cdot 44764$	7.06785	5．57184	9	
30	1	0.80385	0.59482	0.79335	0.60876	0.78260	0.62251	1	
	2	1.6077 I	1.18964	1.58670	1.21752	I． 56521	1.24502	2	
	3	2.41 I 57	1.78446	2.38005	1．82628	2.34782	1.86754	3	
	4	3.21542	2.37929	3．1734	2.43504	3.13043	2.49005	4	
	5	4.81928	2.9741 I	3.96676	3.04380	3.91304	3.11257	5	3°
	6	4.82314	3.56893	4.76011	3.65256	4.69564	3.73508	6	
		5.62699	4.16375	5．55347	4.26 I 32	5.47825	4.35760	7	
	8	6.43085	4.75858	6.34682	4.87009	6.26086	4.98011	8	
	9	7．2347 1	5.35340	7．14017	5.47885	7.04347	5.60263	9	
45	1	0.80125	0.59832	0.79068	0.61221	0.77988	0.62592	1	
	2	1.60250	1.19664	1．581 37	1.22443	I． 55946	1.25184	2	
	3	2.40376	1.79497	2.37206	1.83665	2.33965	1.87777	3	
	4	3.20501	2.39329	3.16275	2.44886	3.11953	2.50369	4	
		4.00626	2.99162	3.95344	3.06108	3.89942	3.12961	5	15
	6	4.80752	3.58994	4.74413	3.67330	4.67930	3.75554	6	5
	7	5.60877	4.18827	5.53482	4.28552	5.45919	4.38146	7	
	8	6.41003	4.78659	6.32551	4.89773	6.23907	5.00738	8	
	9	7.21128	$5 \cdot 38492$	7.11620	5．50995	7.01896	5.6333 I	9	
		Dep．	Lat．	Dep．	Lat．	Dep．	Lat．	苛	当
		53°		52°		51°			

Smithsonian Tables．

TRAVERSE TABLE.
DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

		39°		40°		41°			
		Lat.	Dep.	Lat.	Dep.	Lat.	Dep.		
0	1	0.77714	0.62932	0.76604	0.64278	0.75470	0.65605	1	
	2	I. 55429	1.25864	1.53208	1.28557	1.50941	1.31211	2	
	3	2.33143	1.88796	2.29813	I. 92836	2.26412	1.96817	3	
	4	3.10858	2.51728	3.06417	2.57115	3.01883	2.62423	4	
	5	3.88573	3.14660	3.83022	3.21393	3.77354	3.28029	5	60
	6	4.66287	3.77592	4.59626	3.85672	4.52825	3.93635	6	
	7	$5 \cdot 44002$	4.40524	$5 \cdot 36231$	4.49951	5.28296	4.59241	7	
	8	6.21716	5.03456	6.12835	5.14230	6.03767	5.24847	8	
	9	6.9943 I	5.66388	6.89439	5.78508	6.79238	5.90453	9	
15	1	0.77439	0.63270	0.76323	0.64612	0.75184	0.65934	1	
	2	1.54878	1.26541	1. 52646	1.29224	1.50368	1.31869	2	
	3	2.32317	1.89811	2.28969	1.93837	2.25552	1.97803	3	
	4	3.09757	2.53082	3.05293	2.58449	3.00736	2.63738	4	
	5	3.87196	3.16352	3.81616	3.23062	3.75920	3.29672	5	45
	6	4.64635	3.79623	4.57939	3.87674	4.51104	3.95607	6	
	7	$5 \cdot 42074$	4.42893	5.34262	4.52286	5.26288	4.61542	7	
	8	6.19514	5.06164	6.10586	5.16899	6.01472	5.27476	8	
	9	6.96953	5.69434	6.86909	5.81511	6.76656	$5 \cdot 93411$	9	
30	1	0.77162	0.63607	0.76040	0.64944	0.74895	0.66262	1	
	2	1. 54324	1.27215	1.52081	1.29889	1.49791	1.32524	2	
	3	2.31487	1.90823	2.28121	1.94834	2.24686	1.98786	3	
	4	3.08649	2.54431	3.04162	2.59779	2.99582	2.65048	4	
	5	3.85812	3.18039	3.80203	3.24724	3.74477		5	30
	6	4.62974	3.81646	4.56243	3.89668	4.49373	3.97572	6	
	7	5.40137	4.45254	5.32284	4.54613	5.24268	4.63834	7	
	8	6.17299	5.08862	6.08324	5.19558	5.99164	$5 \cdot 30096$	8	
	9	6.94462	5.72470	6.84365	5.84503	6.74060	$5 \cdot 96358$	9	
45	1	0.76884	0.63943	0.75756	0.65276	0.74605	0.66588	1	
	1	I. 53768	1.27887	1.51513	1.30552	1.49211	1.33176	2	
	3	2.30652	1.9183 I	2.27269	1.95828	2.23817	1.99764	3	
	4	3.07536	2.55775	3.03026	2.61104	2.98422	2.66352	4	
	5	3.84420	3.19719	3.78782	2.26380	3.73028	3.32940	5	15
	6	4.61305	3.83663	4.54539	3.91656	$4 \cdot 47634$	3.99529	6	
	7	5.38189	4.47607	5.30295	4.56932	5.22240	4.66117	7	
	8	6.15073	5.11551	6.06052	5.22208	5.96845	$5 \cdot 32705$	8	
	9	6.91957	5.75495	6.81808	5.87484	6.7145 I	5.99293	9	
3 3 苞	$\begin{aligned} & \text { E.0. } \\ & \text {. } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	$\underset{0}{0}$OO.©	$\begin{aligned} & \text { 客 } \\ & \stackrel{5}{7} \\ & \end{aligned}$
		50°		49°		48°			

Smithsonian Tables.

Table 9.
TRAVERSE TABLE．
DIFFERENCES OF LATITUDE AND DEPARTURE，－CDNTINUED．

		42°		43°		44°		$\begin{aligned} & \text { 荷 } \\ & \text { H } \\ & \text { H } \end{aligned}$	
		Lat．	Dep．	Lat．	Dep．	Lat．	Dep．		
0	1	0.74314	0.66913	0.73135	0.68199	0.71933	0.69465	1	
	2	I． 48628	1．33826	1.46270	1． 36399	1.43867	1.38931	1	
	3	2.22943	2.00739	2．19406	2.04599	2.15801	2.08397	3	
	4	2.97257	2.67652	2.92541	2.72799	2.87735	2.77863	4	
	5	3.71572	3.34565	3.65676	3.40999	3.59669	3.47329	5	60
	6	4.45886	4.01478	4.38812	4.09199	4.31603	4.16795	6	
	7	5.20201	4.6839 x	5.11947	4.77398	5.03537	4.86260	7	
	8	5.94515	5.35304	5.85082	5.45598	5.75471	5．55726	8	
	9	6.68830	6.02217	6.58218	6.13798	6.47405	6.25192		
15	1	0.74021	0.67236	0.72837	0.68518	0.71630	0.69779	1	
	2	1.48043	1.34473	1.45674	1.37036	1.43260	1.39558	2	
	3	2.22065	2.01710	2.18511	2.05554	2.14890	2.09337	3	
	4	2.96087	2.68946	2.91348	2.74073	2.86520	2.79116	4	
	5	3.70109	3.36183	3.64185	3.42591	3.58151	3.48895	5	45
	6	4.44130	4.03420	4.37022	4.11109	4.29781	4.18674	6	
	7	5.18152	4.70656	5.09859	4.79628	5.01411	4.88453	7	
	8	5.92174	5.37893	5.82696	5.48146	5.73041	5．58232	8	
	9	6.66796	6.05130	6.55533	6.16664	6.44671	6.2801 I	9	
30	1	0.73727	0.67559	0.72537	0.68835	0.71325	0.70090	1	
	2	1．47455	1.35118	1． 45074	1.37670	1.42650	1.40181	2	
	3	2.21183	2.02677	2.17612	2.06506	2.13975	2.10272	3	
	4	2.94910	2.70236	2.90149	2.75341	2.85300	2.80363	4	
	5	3.68638	3.37795	3.62687	3.44177	3.56625	3.50454	5	30
	6	4.42366	4.05354	4.35224	4.13012	4.2795°	4.20545	6	
	7	5．16094	4.72913	5．07762	4.81848	4.99275	4.90636	7	
	8	5.89821	5．40472	5.80299	5．50683	5.70600	5.60727	8	
	9	6.63549	6.08031	6.52836	6.19519	6.41925	6.30818	9	
45	1	0.73432	0.67880	0.72236	0.69151	0.71018	0.70401	1	
	2	1.46864 ．	1.35760	1.44472	1.38302	1.42037	1．40802	2	
	3	2.20296	2.03640	2.16709	2.07453	2.13055	2.11204	3	
	4	2.93729	2.71520	2.88945	2.76605	2.84074	2.81605	4	
	5	3.67161	3.39400	3.61182	3.45756	3.55092	3.52007	5	15
	6	$4 \cdot 40593$	4.07280	4．33418	4.14907	4．26III	4.22408	6	
		5.14025	4.75160	5．05654	4.84059	4.97129	4.92810	7	
	8	5.8745^{8}	5.43040	5.77891	5.532 IO	5.68148	5.63211	8	
	9	6.60890	6.10920	6.50127	6.22361	6.39166	6.33613	9	
$\begin{aligned} & \text { 急 } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{6} \end{aligned}$		Dep．	Lat．	Dep．	Lat．	Dep．	Lat．	H	条
	¢	47°		46°		45°		？	\％

Smithsonian Tableb．

DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED.

Smithsonian Tables.
[Derivation of table explained on p . xlv.]

Smithsonian Tables.
[Derivation of table explained on p. xlv.]

Lat.	$1 \mathrm{I}^{0}$	12°	13°	14°	15°	16°	17°	18°	19°	20°		
0^{\prime}	7.317	7.317	7.317	7.317	7.318	7.318	7.318	7.318	7.318	7.318	4	
	8985	9285	9615	9960	0333	0730	1149	1591	2054	2539		
1	8990	9290	9617	9966	0340	$\bigcirc 737$	1156	1599	2062	2547		
${ }^{2}$	8995	9296	9622	9972	c346	$\bigcirc 744$	1163	1606	2070	2556		
3	8999	9301	9628	9978	${ }^{\circ} \mathrm{O} 53$	${ }^{0} 75^{\circ}$	${ }^{1171}$	1614	2078	2564	10	.7
4	9004	9306	963.3	9984	0359 0366	0757	1178	1621	2086	2572	20 30	1.3 2.0 $\mathbf{2}$
6	9009	9312	9639	9990	${ }^{0366}$	0764	1185	1629 1637	2094 2102	2580 2589	40	2.8 2.7
	9014	9317	9645	999	${ }^{0372}$	${ }^{271}$	1192				50	3.3
8	9019 9023	9322 9327 9	9650 9656	$* 0002$ $* * 0008$	0372 037 0385	0778 0784	1199 1207 129	1644 1652	2110 2118	2597 2605	60	4.0
9	9028	9333	9661	${ }^{*} 0014$	-392	0791	1214	1659	2126	2614		
10	9033	9338	9667	${ }^{*} 0020$	-398	${ }^{0} 798$	1221	1667	2134	2622	5	
11	9038	9343	9673	${ }_{*}^{*} 0026$	0404	0805	1228	1675	2142	2630		
12	9043	9349	9678	${ }_{*}^{*} 0032$	0411	0812	1236	1682 1690	2150	2639 2647		
13	9048	9354	9684	${ }^{*} 0039$	0418	0819	1243	1690	2158		10 20	. 8
14	9053	9359	9690 9696	${ }_{*}^{*} 0045$				1697 1705	2166 2174 2184	2655 2663	20 30	1.7 2.5
15	9058 9062	9365 9370	9696 9701	${ }_{*}^{*} \mathbf{0} \mathbf{0 0 5 1}$	0430 0437	0838 083 0839	1258 1265	1705 17×3 18	2174 $\mathbf{2 1 8 2}$	2663 2672	40	3.3
17	9067	9375	9707	*0063	0443	0846	1272	1720	2190	2680	60	5.0
18	9072	9380	9713	${ }^{*} 0070$	- 450	0853	1279	${ }^{1728}$	2198	2688		
19	9077	9386	9718	${ }^{*} 0076$	0456		1287	1735		6697	8	
20	9082	9391	9724	*0082	0463	0867	1294	1743	2214	2705		
21	9087	9396	9730	${ }^{*} 0088$	0470	0874	${ }^{1301}$	${ }^{1751}$	2222	${ }^{2713}$		
22	9092	9402	9736	${ }^{*} 0094$	0476	0881 0888 088	1309 1316	1758 1766	2230 2238	2722 2730		
23	9097	9407	9741	*oror	0483		1316			${ }^{2730}$	10 20	1.0
24	9102	9413	9747	${ }^{*}$ crio7	-489	0895	1323	1774	2246	${ }^{2739}$	30	3.0
25	9107	9488	9753	$*$ $*$ $*$ $*$ O11	${ }^{0} \mathbf{0} 496$	O902 0909	1330 1338 138	1781 1789	2254 2262	2747 2755	40	4.0
	9112	9423	9759		${ }^{\circ} 503$	0909		1789		2755	50	5.0
27	9157	9429	9765	${ }^{*} 0125$	0509	0916	1345	1797	2270	2764	60	6.0
28	9122	9434	9770 9776	+ ${ }_{*}^{*} \mathbf{0 1 3 2}$	0516 0522 05	0923 093 093	$\begin{array}{r}1352 \\ 1360 \\ \hline\end{array}$	1805 1812	2278 2286	2772 2781 2788		
30											7	
	9132	9445	9782	*O144	0529	0937	1367	182	2294	2789		
3 3	9 O 37	9450	9788		${ }^{0} 536$	0944	1374	1828	2302			
32 33 3	9142 9147	9456 946 I	9794 9800	${ }_{*}^{*}{ }^{0156} 5$	0542 0.549 0	0951 0958 0	1382 1389	1885 1843	2310 2318	2806 2814	10	1.2
33	9147	946I	9800	*0163	0549	0958	1389		2318		20	2.3
34	9152	9467	9806	${ }_{*}^{*}{ }_{*}^{*} 0169$	0555	${ }^{0965}$	1397	185	2326	2823	30	3.5
35	9357	9472	9812 9817	*0175	${ }^{0} 9562$	0972 0979	1404 1411	1858 1866	2334 2343	2833 2840	40	4.7
36	9162	9477	9817	${ }^{* O 181}$	${ }^{\circ} 569$	0979	1411		2343	2840	50	5.8
37	9167	9483	9823	${ }_{*}^{*} 0187$	$\bigcirc 575$	0986	1419	1874	2351	2848	60	7.0
38 39	9172 9177	9488 9494	98829 9855	${ }_{*}^{*}{ }_{*}^{*} \mathbf{0 2 0 0}$	0582 0588 0	0993 1000	$\begin{array}{r}1426 \\ 1434 \\ \hline\end{array}$	1882 1889	2359 2367	2857 2865		
40	9182	9499	9841	*0206	0595	1007	1441	1897	2375	2874	8	
41	9887	9505	9847	*0212	0602	1014	1448	1905	2383	28822897		
42	9192	9510	9853	${ }^{*} 02219$	0608	1021	1456	1913	${ }^{2391}$			
43	9197	9516	9859	*0225	0615	1028	1463	1920	2400	2899	10	1.3 2.7
44	9202	9523	9865	${ }^{*} 023 \mathrm{3I}$	0622	1035	${ }^{1471}$	1928	2408	2908	30	4.0
45	9207	9527	9871	${ }^{*} 0238$	0629	1042	1479	1936	2416	2916	40	$5 \cdot 3$
46	9213	9533	9876	*0244	${ }^{\circ} 665$	1050	1486	1944	2424	2925	50	6.7
47	92.8	9538	9882	*0250	${ }^{0} 6{ }_{42}$	1057	1494	1952	2432	2933	60	8.0
48	9223	9544	9888	${ }^{*} 0256$	${ }^{\circ} 649$	1064	1501	1959	${ }^{2441}$	2942		
49	9228	9549	9894	${ }^{*} 0263$	0655	1075	1509	1967	2449	2950		
60	9233	9555	9900	*0269	0662	1078	1516	1975	2457	2959	9	
5 sr	9238	9561	9906	${ }^{*} 0275$		1085	1524	1983	2465	2968		
52	9243	9566	9912	${ }_{*}^{* 0282}$	${ }^{0676}$	1082 1099	$\begin{array}{r}1531 \\ 1539 \\ \hline\end{array}$	1991 1999	2473 2482	2976 2985	10	1.5
53	9249	9572	9918	*0288	0682	1099	1539	1999	2482	2985	20	3.0
54	9254	9577	9924	${ }_{*}^{*} 0295$	0689	1706	1546	2007	2490	2903	30	4.5
55	9259	${ }_{958}^{958}$	9936	${ }_{*}^{*} 0301$	${ }^{0696}$	1113	1554	2014 2022	2498	3002	$4{ }^{4}$	6.0
56	9264	9589	9936	*0307	$\bigcirc 703$	1121	1561	2022	2506	3015	50	7.5
57	9269	9594	9942	${ }^{*} 0314$		1128	${ }^{1569}$	2030	2514	3019		9.0
58	9275	9600	9948	${ }^{*} \mathbf{0 3 2 0}$	0716	1135	1576	2038	2523	3028		
59	9280	9605	9954	*0327	0723	1142	1584	2046	2531	3036		
80	9285	9673	9960	${ }^{*} 0333$	-730	1749	${ }^{1591}$	2054	2539	3045		

Table 10.
LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_{m} IN ENGLISH FEET.
[Derivation of table explained on p . xlv.]

[Derivation of table explained on p . xlv.]

Table 10.
LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_{m} IN ENGLISH
FEET.
[Derivation of table explained on p. xlv.]

Table 10.

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_{m} IN ENGLISH
FEET.
[Derivation of table explained on p. xlv.]

Smithsonian Tables.
[Derivation of table explained on p. xlv.]

Lat.	$6 \mathrm{I}^{\circ}$	62°	63°	64°	65°	66°	67°	68°	69°	. 70°	P. P.		
0	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	11		
	1197	1845	2479	3097	3698	4282	4848	5396	5924	6432			
I	1208	${ }^{1856}$	2489	3107	3708	4292	4857	5405	5933	6440			
2	1219	1866	2500	3117	3718	4301	4867	5414	5941	6448			
3	1230	1877	2510	3227	3728	4315	4876	5423	5950	6457			
4	1241	1888	2521	3137	3738	4320	4885	5432	5958	6465			
5	${ }^{1251}$	1898	2531	3147	3747	4330	4894	5440	5967	6473			
	5262	1909	2541	3158	3757	4340	4904	5449	5976	6481			
7	1273	1920	2552	3168	3767	4349	4913	5458	5984	6488	$\begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \end{array}$	$\begin{array}{r} 2.8 \\ 3.7 \\ 5.5 \\ 7.3 \\ 9.2 \\ 91.2 \end{array}$	
8	1284	193 x	2562	31788	3777 3787	4359	4922	5467	5993	6498			
9	1295	$194 \times$	2573		3787	4368	4932		6001				
10	1306	1952	2583	3198	3797	4378	$494{ }^{1}$	5485	6010	6514			
12	1317 1328 138	1963 1973	2593 2604	3208 3218	3807 3817	4388	$\begin{aligned} & 4950 \\ & 4959 \\ & 4969 \end{aligned}$	$\begin{aligned} & 5494 \\ & 5503 \\ & 5512 \end{aligned}$	$\begin{aligned} & 6018 \\ & 6027 \\ & 6035 \end{aligned}$	$\begin{aligned} & 6522 \\ & 6530 \\ & 6539 \end{aligned}$			
12 13 13	1328 1338 138	1973 1984 198	2604 2614	3218 3228	3817 3882 38	4397 4406							
14	${ }^{1349}$	$\underline{\mathrm{r}} 904$	2625	3238	3836	44×6	4978	5521	6044	6547	10		
15	8360	2005	2635	3248	3846	4425	4987	5529	6052	6555			
16	${ }^{1375}$	2016	2645	3259	3856	4435	4996	5538	6061	6563			
17	${ }^{1382}$	2026	2656	3269	3866	4444	5005	5547	6069	6571			
18	1392	2037	2666	3279	3875	4454	5015	5556	6078	6580			
19	1403	2047	2677	3289	3885	4463	5024	5565	6086	6588			
20	1414	2058	2687	3299	3895	4473	5033	5574	6095	6596	$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 70 \\ & 60 \end{aligned}$	$\begin{array}{r}1.7 \\ 3.3 \\ 5.0 \\ 6.7 \\ 8.3 \\ 10.0 \\ \hline\end{array}$	
21	1425	2069	2697	3309	3905	44^{82}	5042	558,	6103	6604			
22	1436	2079	2708	3319	3915	4492	5051	5592	6112	6612			
23	1447	2090	27.8	3329	3924	4501	5060	5600	6120	6621			
24	1458	2100	2728	3339	3934	4511	5069	5609	6×29	6629			
25	1468	2111	2738	3349	3944	4520	5078	5618	${ }^{6137}$	6637			
26	1479	2122	2749	3360	3954	4530	5088	5627	6846	6645			
27	1490	2132	2759	3370	3964	4539	5097	5636	6154	6653	0		
28	1501	2143	2769	3380	3973	4549	5106	5644	6163	6662			
29	1512	2×53	2780	3390	3983	4558	5115	5653	6171	6670			
30	1523	2164	2790	3400	3993	4568	5124	5662	6 6 80	6678			
31 32 3	1534 1545	2175 2885		3410 3420	4003 4012	4577 4587	5133 5142 1	${ }_{5681}^{5671}$	6188 6197	6686 6694 6702			
32 33 3	1545 1555	2185 2196	2812 2828 2831	3420 3430	4012	4587 4596	5152	5680 5688	6197 6205				
34	1566	2206	2831	3440	4032	4606	5160	5697	6214	6710	10	1.53.0	
35	1577	2217	2841	3450	4041	4615	5169	5706	6222	6718	20		
36	1588	2228	2852	3460	4051	4624	5179	5715	6230	6727	3040	4.5	
37	1599	2238	2862	3470	4061	4634	5188						
38	1609	2249	2872	3480	4071	4643	5197	5732	6247	6743	5060	7.59.0	
39	1620	2259	2883	3490	4080	4653	5206	574r	6256	6751			
40	1631	2270	2893	3500	4090	4662	5215	5750	6264	6759	8		
$4 x$ 42 4	1642 1652 162	2280 2291	2903 2983	3510 3520	4100	4675	5224	5759	${ }_{6}^{6272}$	6767			
42 43	1642 1663	2291 2301	2913 2924	3520 3530	4109 4119	4685	5233 5242	5767	6_{6281}	6775			
44						4690	5242	577^{6}	6289	678			
45	1674 1684	2312 2322	2934	3540	4×28	4699	5251	5785	6298	$\begin{aligned} & 6791 \\ & 6799 \\ & 6807 \end{aligned}$			
46	$\begin{array}{r}1684 \\ \\ \hline 695\end{array}$	2323 233	2944	3549 3559	4138 4148	4708 4718	5260 5270	5793 5802	6306				
47	1706	2343	2964	3569	4157	4727	5279	58 II	6323		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.6 \\ & 4.0 \\ & 5.3 \\ & 6.7 \\ & 8.0 \end{aligned}$	
48	1717	2354	2975	3579	4167	4736	5288	5820	6331	${ }_{6823}$			
49	1727	2364	2985	3589	4176	4746	5297	5828	6340	6831			
50	${ }^{1738}$	2375	2995	3599	4186	4755	5306	5837	6348	6839			
51	1749	${ }^{2385}$	3005	3609	4196	4764	5315	5846	6356	$\begin{aligned} & 6847 \\ & 6855 \\ & 6863 \end{aligned}$			
52	1759	2396	3015	${ }^{6619}$	4205	4774	5324	5854	6365				
53	1770	2406	3026	3629	4215	4783	5333	5863	6373				
54	${ }^{1788}$	2417	3036	3639	4224	4792	5342	5872	6382	6871			
55	1791 1802 1820	2427 2437	3046 3056	3648 3658	4234	4801	5351	5880	6390	6879			
56	1802	2437	3056	3658	4244	4^{811}	5360	5889	6398	6887			
57	1813 18	2448	3066	3668		4820		5898					
58	1824 1834	2458	3077	3678	4263	4829	5378	5007	6445	$6 \mathrm{6og} 3$			
59	1834	2469	3087	3688	4272	4839	5387	5915	6424	6911			
60	${ }^{2845}$	2479	3007	3698	4282	4848	5396	5924	6432	6919			

[Derivation of table explained on p. xlv.]

Lat.	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°	P. P.	
0^{\prime}	$\begin{gathered} 7.321 \\ 6919 \end{gathered}$	$\begin{gathered} 7.321 \\ 73^{85} \end{gathered}$	$\begin{gathered} 7.321 \\ 7829 \end{gathered}$	$\begin{gathered} 7.321 \\ 8251 \end{gathered}$	$\begin{gathered} 7.321 \\ 8650 \end{gathered}$	$\begin{gathered} 7.321 \\ 9025 \end{gathered}$	$\begin{gathered} 7.321 \\ 9377 \end{gathered}$	$\begin{gathered} 7.321 \\ 9704 \end{gathered}$	7.322 0007	$\begin{gathered} 7.322 \\ 0284 \end{gathered}$		
3	$\begin{aligned} & 6927 \\ & 6935 \\ & 6943 \end{aligned}$	$\begin{aligned} & 7392 \\ & 7400 \\ & 7407 \end{aligned}$	788 7836 7843 7855 785	$\begin{aligned} & 8258 \\ & 8265 \\ & 827 x \end{aligned}$	$\begin{aligned} & 8656 \\ & 8663 \\ & 8669 \end{aligned}$	$\begin{aligned} & 903 x \\ & 9037 \\ & 9043 \end{aligned}$	$\begin{aligned} & 9388 \\ & 9388 \\ & 9394 \end{aligned}$	$\begin{aligned} & 9709 \\ & 9714 \\ & 9720 \end{aligned}$	0012 0017 0021	$\begin{aligned} & 0288 \\ & 0293 \\ & 0297 \end{aligned}$		
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 6955 \\ & 6958 \\ & 6966 \end{aligned}$	$\begin{aligned} & 7415 \\ & 7422 \\ & 7430 \end{aligned}$	$\begin{aligned} & 7858 \\ & 7865 \\ & 7872 \end{aligned}$	$\begin{aligned} & 8278 \\ & 8285 \\ & 8292 \end{aligned}$	$\begin{aligned} & 8676 \\ & 8682 \\ & 8688 \end{aligned}$	$\begin{aligned} & 9049 \\ & 9055 \\ & 9061 \end{aligned}$	$\begin{aligned} & 9399 \\ & 9405 \\ & 9411 \end{aligned}$	$\begin{aligned} & 9725 \\ & 9730 \\ & 9735 \end{aligned}$	0026 0031 0036	0302 0306 0310	10	1.3 2.6
7 8 9	$\begin{aligned} & 6974 \\ & 6982 \\ & 6990 \\ & \hline \end{aligned}$	$\begin{aligned} & 7437 \\ & 7445 \\ & 7452 \end{aligned}$	$\begin{aligned} & 7879 \\ & 7^{887} \\ & 7^{8994} \end{aligned}$	$\begin{aligned} & 8299 \\ & 8395 \\ & 8312 \end{aligned}$	$\begin{aligned} & 8695 \\ & 8751 \\ & 8708 \end{aligned}$	$\begin{aligned} & 9067 \\ & 9073 \\ & 9079 \end{aligned}$	$\begin{aligned} & 9416 \\ & 9422 \\ & \hline 0427 \end{aligned}$	$\begin{aligned} & 9740 \\ & 9746 \\ & 9755^{2} \end{aligned}$	$\begin{aligned} & 004 \mathrm{I} \\ & 0045 \\ & 0050 \end{aligned}$	$\begin{aligned} & 0315 \\ & 0319 \\ & 0324 \\ & 0324 \end{aligned}$	30 40 50 60	4.0 5.3 6.7 8.0
10	6998	7460	7908	8319	8714	9085	9433	9756	0055	${ }^{0} 328$	7	
11 12 13	$\begin{aligned} & 7006 \\ & 7014 \\ & 7021 \end{aligned}$	7467 7475 7482	7908 7915 7922	8326 8332 8339 839	8720 8727 8733	9091 9097 9003	9438 9444 9449	976 I 9766 977	0060 0064 0069	$\begin{aligned} & \mathbf{0 3 3 2} \\ & 0337 \\ & 0341 \end{aligned}$		
14	7029 7037	7490 7497	7929 7936	8346 8353 8	8739 8745	9109 9115	9455 9460	9776 978 I	0074 0078 008	0345 0349		
16	7045	7505	7944	8359	8752	9121	9466	9787	${ }^{0083}$	0354	10	
17 18 19	7053 7000 7068	$\begin{aligned} & 7512 \\ & 7520 \\ & 7527 \end{aligned}$	$\begin{aligned} & 7951 \\ & 7958 \\ & 7965 \end{aligned}$	$\begin{aligned} & 8366 \\ & 8373 \\ & 8370 \end{aligned}$	8758 8764 8771 877	$\begin{aligned} & 9 \times 27 \\ & 9133 \\ & 9 \times 39 \end{aligned}$	$\begin{aligned} & 9471 \\ & 9477 \\ & 9482 \end{aligned}$	9792 9797 9802	$\begin{aligned} & 0088 \\ & 0093 \\ & 0097 \end{aligned}$	$\begin{aligned} & 0358 \\ & 0362 \\ & 036 \\ & 0367 \end{aligned}$	20 30 40 40	1.2 2.3 3.5 4.7
20	7076	7535	7972	8386	8777	9145	9488	9807	0102	0371	5	7.0
21 22 23	7084 7092 7099	7542 7550 7557	7979 7988 7993	8393 8399 8406	8783 8790 8796	9151 9157 9653	9493 9499 9594	9812 9887 9822	Or07 O11 O16	$\begin{aligned} & 0375 \\ & 0379 \\ & 037 \\ & 0384 \end{aligned}$	6	
24 25 26	7107 7115 7123	7565 7572 7580	8000 8007 8014	8813 8413 8419 8426	8802 8808 8815	9169 9174 988 9880	9510 9515 9521	$\begin{aligned} & 9827 \\ & 9832 \\ & 9838 \end{aligned}$	$\begin{aligned} & 0120 \\ & 0125 \\ & 0130 \\ & 0130 \end{aligned}$	${ }_{0} 088$ 0392 ${ }^{-396}$		
$\begin{aligned} & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 7131 \\ & 7188 \\ & 7146 \\ & \hline \end{aligned}$	7587 7595 7602	8021 8028 8035	$\begin{aligned} & 8433 \\ & 8440 \\ & 8446 \end{aligned}$	$\begin{aligned} & 882 \mathrm{x} \\ & 8827 \\ & 8834 \\ & \hline \end{aligned}$	$\begin{aligned} & 9186 \\ & 9192 \\ & 9198 \\ & \hline \end{aligned}$	$\begin{aligned} & 9526 \\ & 9532 \\ & 9537 \\ & \hline \end{aligned}$	9843 9848 9853 9853	$\begin{array}{r} 0134 \\ \text { O1 } 39 \\ \text { O143 } \\ \hline \end{array}$	$\begin{aligned} & 0400 \\ & 0405 \\ & 0499 \\ & \hline \end{aligned}$	10 20 30	1.0 2.0 3.0
30	7154	7610	8042	8453	8840	9204	9543	9858	0148	0413	40 50	4.0 5.0
31 32 33	7162 7170 7177	7617 765 7632	8049 8056 8063	8460 8466 8473	8846 8852 8859	9210 9216 $\mathbf{9 2 2 1}$	9548 9554 9559	9863 9868 9873	$\begin{array}{r} 0153 \\ 0157 \\ 0150 \end{array}$	$\begin{aligned} & 0417 \\ & 042! \end{aligned}$	60	6.0
33 34 34 35 36	7177 7185 7193 7201	7632 7639 7646 7654	8063 8070 8077 8084	8473 8479 8489 8493	$\begin{aligned} & 8859 \\ & 8865 \\ & 887 \mathrm{I} \\ & 8877 \end{aligned}$	$\mathbf{9 2 2 1}$ $\mathbf{9 2 2 7}$ $\mathbf{9 2 3 3}$ $\mathbf{9 2 3 9}$	9559 9565 9550 9575	9873 9878 9888 9888 988	0162 0166 0168 O17 O17	0426 0430 0434 0438	5	
$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$	7209 7216 7224	7661 7668 7676	$\begin{aligned} & 809 \mathrm{x} \\ & 8098 \\ & 8 \times 05 \\ & \hline \end{aligned}$	8499 8506 8512	$\begin{aligned} & 8883 \\ & 8890 \\ & 8896 \end{aligned}$	$\begin{aligned} & 9245 \\ & 9250 \\ & 9256 \end{aligned}$	$\begin{aligned} & 958 \mathrm{I} \\ & 9566 \\ & 9592 \end{aligned}$	$\begin{aligned} & 9893 \\ & 9898 \\ & 9903 \end{aligned}$	or8o 0185 or89	0442 0447 0451 045	то	. 8
40	7232	7683	8112	8519	8902	9262	9597	9908	0194	0455	30	2.5
41 42 43	7240 7247 7255	7690 7798 7705	8112 8119 8126 8133	8526 8532 8539	8908 8984 8921	$\mathbf{9 2 6 8}$ $\mathbf{9 2 7 4}$ $\mathbf{9 2 7 9}$	$\begin{aligned} & 9602 \\ & 9608 \\ & 96 \times 3 \end{aligned}$	9913 9918 9988 9923	0199 0203 0208 0208	0459 0459 0463 0467	50	4.2 5.0
$\begin{aligned} & 44 \\ & 45 \\ & 46 \end{aligned}$	7263 7270 7278	7712 7719 7727	818 8140 8147 8154 8154 8	8545 8552 855 8559	$\begin{aligned} & 8927 \\ & 8933 \\ & 8939 \end{aligned}$	9285 9291 9297 98	$\begin{aligned} & 9619 \\ & 9624 \\ & 9629 \end{aligned}$	$\begin{aligned} & 9928 \\ & 9933 \\ & 9938 \end{aligned}$	0212 0217 0222	$\begin{aligned} & 0471 \\ & 0475 \\ & 0480 \end{aligned}$		
$\begin{aligned} & 47 \\ & 48 \\ & 49 \end{aligned}$	7286 7224 7301	$\begin{array}{r} 7734 \\ 7741 \\ .7749 \end{array}$	$\begin{aligned} & 8161 \\ & 8168 \\ & 8175 \end{aligned}$	$\begin{aligned} & 8565 \\ & 8572 \\ & 8578 \end{aligned}$	$\begin{aligned} & 8945 \\ & 8952 \\ & 8958 \end{aligned}$	9303 9308 9354	$\begin{aligned} & 9635 \\ & 9640 \\ & 9646 \end{aligned}$	9943 9948 9953	$\begin{aligned} & 0226 \\ & 023 \mathrm{I} \\ & 0235 \\ & \hline 02 \end{aligned}$	$\begin{aligned} & 0484 \\ & 0488 \\ & 0492 \end{aligned}$	4	
50	7309	7756	8182	8585	8964	9320	9651	9958	0240	0496	$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$.7 r. r
$\begin{aligned} & 51 \\ & 52 \\ & 53 \end{aligned}$	7317 7324 7332	7763 7771 7778	$\begin{aligned} & 8189 \\ & 8196 \\ & 8203 \end{aligned}$	8591 8598 8604	8970 8976 8982	9326 9331 9337	$\begin{aligned} & 9656 \\ & 9662 \\ & 9667 \end{aligned}$	9963 9968 9973	0244 024 0253	$\begin{aligned} & 0500 \\ & 0504 \\ & 0508 \end{aligned}$		2.0 2.7 3.3 4.0
54 55 56	$\begin{aligned} & 7339 \\ & 7347 \\ & 7355 \end{aligned}$	7785 7792 7800	8210 8216 8223	$\begin{aligned} & 8611 \\ & 8617 \\ & 8624 \end{aligned}$	8988 8994 9001	$\begin{aligned} & 9343 \\ & 9348 \\ & 9354 \end{aligned}$	$\begin{aligned} & 9672 \\ & 9677 \\ & 9683 \end{aligned}$	$\begin{aligned} & 9978 \\ & 9982 \\ & 9987 \end{aligned}$	0258 0262 0266	$\begin{aligned} & 0512 \\ & 0516 \\ & 0520 \end{aligned}$		
$\begin{aligned} & 57 \\ & 58 \\ & 59 \end{aligned}$	$\begin{aligned} & 7362 \\ & 7370 \\ & 7377 \\ & \hline \end{aligned}$	$\begin{aligned} & 7807 \\ & 7_{814}^{814} \\ & 7822 \end{aligned}$	$\begin{aligned} & 8230 \\ & 8237 \\ & 8244 \end{aligned}$	$\begin{aligned} & 8630 \\ & 8637 \\ & 8643 \end{aligned}$	$\begin{aligned} & 9007 \\ & 9013 \\ & \text { gorg } \end{aligned}$	$\begin{aligned} & 9360 \\ & 9366 \\ & 937 \mathrm{I} \end{aligned}$	$\begin{aligned} & 9688 \\ & 9693 \\ & 9699 \\ & \hline \end{aligned}$	$\begin{array}{r} 9992 \\ \hline 9997 \\ { }^{990002} \\ \hline \end{array}$	$\begin{aligned} & 027 x \\ & 0275 \\ & 0280 \end{aligned}$	$\begin{array}{r} 0524 \\ 0528 \\ 0532 \end{array}$		
60	7385	7829	8251	8650	G025	9377	9704	*0007	0284	0536		

[Derivation of table explained on p. xlv.]

[Derivation of table explained on p. xlv.]

Table 11.
LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION
ρ_{n} IN ENGLISH FEET.
[Derivation of table explained on p. xlv.]

Table 11 .
LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_{n} IN ENCLISH FEET.
[Derivation of table explained on p. xlv.]

Table 11.
LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_{n} IN ENGLISH FEET.
[Derivation of table explained on p . xlv.]

Table 11 ,
LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION
ρ_{n} IN ENGLISH FEET.
[Derivation of table explained on p. xlv.]

Table 11.
LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_{n} IN ENGLISH FEET.
[Derivation of table explained on p. xlv.]

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION

 ρ_{n} IN ENGLISH FEET.[Derivation of table explained on p . xlv.]

Table 11.
LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_{n} IN ENGLISH FEET.
[Derivation of table explained on p. xlv.]

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION
ρ_{n} IN ENCLISH FEET.
[Derivation of table explained on p. xlv.]

Table 12.
LOGARITHMS OF RADIUS OF CURVATURE ρ_{a} (IN METRES) OF SECTION OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a.
[Formula for pa given on p. xlv.]

Azimuth.	LATITUDE.									
	22°	23°	24°	25°	26°	27°	28°	29°	30°	31°
0°	6.80237	6.80242	6.80248	6.80254	6.80260	6.80266	6.80272	6.80279	6.80285	6.80292
5	239	244	250	256	262	268	274	280	287	294
10	244	250	255	261	267	273	279	285	292	298
15	254	259	264	270	276	282	288	294	300	306
20	266	271	277	282	288	293	299	305	311	317
25	282	287	292	297	302	308	313	319	325	331
30	300	305	309	314	319	324	330	335	340	346
35	320	324	329	333	338	343	348	353	358	363
40	341	345	350	354	358	362	367	372	377	382
45	364	367	371	375	379	383	387	391	396	400
50	386	389	392	396	399	403	407	411	415	419
55	407	410	413	416	420	423	426	430	434	437
60	427	430	432	435	43^{8}	442	445	448	451	455
65	445	44^{8}	450	453	455	458	46 I	464	467	$47{ }^{\circ}$
70	46 r	463	465	468	470	473	475	478	481	484
75	473	476	478	480	482	484	487	489	492	494
80	483	485	487	489	491	493	495	498	500	502
85	489	490	492	494	496	498	501	503	505	507
90	490	492	494	496	498	500	502	504	507	509
Azimuth.	LATITUDE.									
	32°	33°	34°	35°	36°	37°	3^{8}	39°	40°	41°
0°	6.80299	6.80306	6.803 r 3	6.80320	6.80327	6.80335	6.80342	6.80350	6.80357	6.80365
5	300	307	314	322	329	336	344	351	359	366
10	305	312	319	326	333	340	348	355	363	370
15	313	320	326	333	340	348	355	362	369	376
20	324	330	337	343	350	357	364	371	378	385
25	337	343	349	355	362	368	375	382	388	395
30	352	358	364	370	376	382	388	394	401	407
35	369	374	380	385	391	397	402	408.	414	420
40	386	392	397	402	407	412	418	423	429	434
45	405	410	414	419	424	429	434	439	444	449
50	423	428	432	436	44 I	445	450	454	459	464
55	44 I	445	449	453	457	461	465	469	474	478
60	45^{8}	462	465	469	472	476	480	484	487	491
65	473	476	480	483	486	489	493	496	500	503
70	486	489	492	495	498	501	504	507	510	514
75	497	500	502	505	508	510	513	516	519	522
80	505	507	510	512	515	517	520	523	525	528
85	510	512	514	517	519	522	524	527	529	532
90	511	514	516	518	52 r	523	526	528	53 r	533

[Formula for ρ_{a} given on p. xlv.]

Azimuth.	LATITUDE.										
	42°	43°	44°	45°	46	47	48°	49°	50°	51^{6}	
0°	6.80373	6.80380	6.80388 6,	6,80396	6.80	6.80	16.804	6.80426	6.80434	6.80442	
5	374	382	389	397			24	- 428	435	443	
10	378	$3^{8} 5$	393	400			5.4	430	438	445	
15	384	39 I	399	406			- 4	435	442	450	
20	392	399	406	413			74	441	448	455	
25	402	408	415	422			6	2449	456	463	
30	413	420	426	433			6 4	2458	465	471	
35	426	432	438	444			6	2468	474	480	
40	440	446	45 I	457			8	4479	485	490	
45	454	459.	464	470			O 4	490	495	500	
50	468	473	478	482			24	6 501	506	510	
55	482	486	490	495			35	812	516	520	
60	495	499	502	506			45	522	526	530	
65	507	510	514	517			45	531	534	53^{8}	
70	517	520	523	526			2	5339	542	545	
75	525	528	530	534			95	545	548	551	
80	53 I	534	536	539			5	550	553	555	
85	534	537	540	542			85	553	555	558	
90	536	538	541	544			95	554	556	559	
Azimuth.	LATITUDE.										
	52°	53°	54°	55°		56°	57°	5°	59°	60°	
0°	6.80449	6.80457	6.80464	4 6.80471		6.80479	6.80486	6.80493	6.80500	6.80506	
5	450 458		465	$5 \quad 472$		479	486	493	500	507	
10	453457		467	7 474		$\begin{array}{r} 481 \\ 485 \end{array}$	488	495	502	509	
15	457	464	471			492	498	505			
20	$462 \quad 469$		476482	$6 \quad 483$			489495	496501	502	509	515
25	469 476 477 484			2 489		508			514	520	
30			490			495 502	508	514	519	525	
35	486		498	8 503		509	515	520	525	531537	
40	496 501 505 510		506	$5{ }^{512}$		517525	522	527	532		
45			515	5520			530	534	539	543	
50	515 520 524 528 533 537		$\begin{aligned} & 524 \\ & 533 \\ & 541 \end{aligned}$	$\begin{aligned} & 528 \\ & 537 \\ & 544 \end{aligned}$		$\begin{aligned} & 533 \\ & 541 \\ & 548 \end{aligned}$	$\begin{aligned} & 537 \\ & 545 \\ & 55^{2} \end{aligned}$	$\begin{aligned} & 542 \\ & 548 \\ & 555 \end{aligned}$	$\begin{aligned} & 546 \\ & 552 \\ & 558 \end{aligned}$	550556562	
55											
60											
65	541	545	548 554	8 - 551		555	558	561	564	567	
70	548	551		 4 557 560 62 565			563568	566	569	572	
75	554	557	559				570	573	575		
80		561	563566566	$\begin{aligned} & 566 \\ & 568 \\ & 569 \end{aligned}$		$\begin{aligned} & 568 \\ & 570 \\ & 571 \end{aligned}$		$\begin{aligned} & 571 \\ & 573 \\ & 574 \end{aligned}$	$\begin{aligned} & 573 \\ & 575 \\ & 576 \end{aligned}$		$\begin{aligned} & 578 \\ & 580 \\ & 580 \end{aligned}$
85	560	563				578					
90	561	564				578					

Table 13.
LOGARITHMS OF FACTORS $\frac{\rho^{\prime \prime}}{2 \rho_{m} \rho_{n}}$ FOR COMPUTING SPHEROIDAL
EXCESS OF TRIANGLES.

UNIT = THE ENGLISH FOOT.

[Derivation and use of table explained on p. lviii.]

ϕ	log. factor and change per minute.	ϕ	log. factor and change per minute.	ϕ	log. factor and change per minute.	ϕ	log. factor and change per minute.
0°	0.37498	20°	0.37429	40°	0.37255	60°	0.37056
1	498	21	422	41	244	61	047
	-0.02		-0.12		-0.17	62	-0.15
2	497	22	415	42	${ }^{234}{ }^{0.17}$	62	$\stackrel{03}{8}_{-0.13}$
3	496	23	408	43	224	63	030
	-0.02		-0.12		$\underline{-214}$	64	-022.13
4	$\underline{495}$	24	$\underline{401}$		-0.18		-0.13
5	493	25	393	45	203	65	014
6	-0.03	26	-0.13	46	-0.17	66	-0.13
	$\underline{-0.03}$		$\underline{-0.13}$		-0.17		-0.13
7	489	27	377	47	183	67	0.36998
8	-0.03	28	-0.15	8	-0.17	68	-0.12
8	4_{-87}	28	$\underline{-}$		-0.18		-0.12
9	484	29	360	49	162	69	984
	0.07		-0.15				
10	480 -0.07	30	${ }_{-351}{ }^{\text {3 }}$	50	152 -0.17	70	${ }_{977}^{0.10}$
11	476	3 I	342	51	142	71	971
12	-472	32	333	52		72	
	-0.07		\bigcirc		-0.17		-0.08
13	468	33		53		73	959
14	-0.08	34	${ }_{314} 0.15$	54	-112	74	-0.10
	-0.07		-0.17		-0.15		-0.08
15	459	35	304	55		75	948
	-0.10		-29.15		-0.17		-0.08
16	453. 0.08	36	$\stackrel{295}{-0.17}$	56	$\stackrel{093}{-0.17}$	76	-943.08
17	448	37	285	57	083	77	938
18	$-44^{0.10}$	38	-275 ${ }_{2}$	58	-0.14	78	-0.0.07
	-0.10		-0.17		-0.15		-0.07
19	$\underline{436}_{-0.12}$	39	$\begin{aligned} & 265 \\ & -0.17 \end{aligned}$	59	$\begin{aligned} & 065 \\ & -0.15 \end{aligned}$	79	$\xrightarrow{930}$
20	${ }_{-0.12}^{429}$	40	${ }^{255}$	60	$\begin{aligned} & 0.56 \\ & -0.15 \end{aligned}$	80	926

Smithsonian Tables.

UNIT = THE METRE.
[Derivation and use of table explained on p. lviii.]

ϕ	log. factor and change per minute.	ϕ	log. factor and change per minute.	ϕ	log. factor and change per minute.	ϕ	log. factor and change per minute.
0°	I.40695	20°	1.40626	40°	I. 40452	60°	I. 40253
	$\underline{695}$		619 0.12		-0.18		-0.15
I	695 6.02	21	619	4 I	${ }_{\text {441 }}$	61	244 -0.15
2	694	22	612 -0.12	42	${ }_{\text {43I }}^{\text {- }}$	62	235 -0.13
3	693	23	605	43	421	63	227
	-0.02		-0.13		-0.17		-0.13
4	$\begin{gathered} 692 \\ -0.03 \end{gathered}$	24	597 -0.12	44	411 -0.18	64	$\begin{aligned} & 219 \\ & -0.15 \end{aligned}$
5	690	25	590	45	400	65	210
	-0.03		-0.13		-0.17		-0.12
6	688	26	582	46	390	66	203
	-686 0.03		-0.15		-0.17	67	$\underline{-0.13}$
7	-086	27	573	47	380	67	195 -0.12
8	683	28	565	48	369	68	188
	-680.05		$\underset{556}{-0.15}$		-0.17		-0.12
9	- 0.05	29	556	49	359	69	$\xrightarrow{\text { 181 }}$
10	${ }_{677}^{-0.07}$	30	${ }_{548}{ }^{-0.15}$	50	349 -0.17	70	174
II	673 -0.07	31	539 -0.15	51	339 -0.17	71	168 -0.12
12	669 -0.07	32	530	52	- 329	72	161 -0.10
13	665	33	520	53	319	73	155
	-0.08		-0.15		-0.17		-0.08
14	660 -0.08	34	511 -0.17	54	309.	74	150 -0.10
15	655	35	501	55	299	75	144
16	-0.080	36	-0.17	56	-0.15	76	-0.08
16	-0.10	36	$\underline{491}$	50	$\underline{-0.17}$	76	139 -0.07
17	644	37	482	57	280	77	135
	-0.08		-0.17		-0.15		- 130
18	$\underline{639}$	38	472 -0.17	58	271 -0.15	78	130 -0.07
19	$\begin{gathered} 632 \\ -0.10 \end{gathered}$	39	$\begin{gathered} 462 \\ -0.17 \end{gathered}$	59	$\begin{aligned} & 262 \\ & -0.15 \end{aligned}$	79	$\begin{aligned} & 126 \\ & -0.05 \end{aligned}$
20	626 -0.12	40	452 -0.18	60	$\begin{aligned} & 253 \\ & -0.15 \end{aligned}$	80	123

Smithsonian Tables.

Table 15.
LOGARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION. UNIT = THE ENGLISH FOOT.
[Derivation and use of table explained on p. 1x.]

ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}	ϕ	a_{1}	$b_{\text {I }}=c_{1}$	a_{2}	b_{2}	c_{2}
$0^{\circ} 0^{\prime}$	7.99669	$7 \cdot 99374$	$-\infty$	-	0.372	1000'	7.99655	7.99369	9.621	9.926	0.398
10	669	374	7.839	8.137	0.372	10	655	- 369	9.628	9.933	0.399
20	669	374	8.140	8.438	0.372	20	654	369	9.636	9.941	0.400
30	669	374	8.3×6	8.614	0.372	30	654	369	9.643	9.948	0.401
40	669	374	8.441	8.739	0.372	40	654	369	9.650	9.955	0.402
50	669	374	8.538	8.836	0.372	50	653	369	9.657	9.963	0.403
100	669	374	8.617	8.915	0.372	1100	653	368	9.663	9.970	0.404
10	669	374	8.684	8.982	0.372	10	652	368	9.670	9.977	0.404
20	668	374	8.742	9.040	0.372	20	652	368	9.677	9.983	0.405
30	668	374	8.793	9.091	0.373	30	651	368	9.683	9.990	0.406
40	668	374	8.839	9.137	0.373	40	651	368	9.690	9.997	0.407
50	668	374	8.880	9.179	0.373	50	650	368	9.696	0.003	0.408
200	668	374	8.918	9.216	0.373	1200	650	367	9.702	0.010	0.409
10	668	373	8.953	9.251	0.373	10	649	367	9.708	0.016	0.410
20	668	373	8.985	9.283	0.373	20	649	367	9.714	0.023	0.412
30	668	373	9.015	9.314	0.374	30	648	367	9.720	0.029	0.413
40	668	373	9.043	9.342	0.374	40	648	367	9.726	0.035	0.414
50	668	373	9.069	9.368	0.374	50	647	367	9.732	0.04 x	0.415
300	668	373	9.094	9.393	0.374	1300	646	366	9.738	0.048	0.416
10	667	373	9.118	9.417	0.375	10	646	366	9.744	0.054	0.417
20	667	373	9.140	9.439	0.375	20	645	366	9.749	0.060	0.418
30	667	373	9.161	9.460	0.375	30	645	366	9.755	0.065	0.419
40	667	373	9.182	9.481	0.376	40	644	366	9.761	0.07 x	0.420
50	667	373	9.201	9.500	0.376	50	644	365	9.766	0.077	0.422
400	667	373	9.220	9.519	0.376	1400	643	365	9.771	0.083	0.423
10	666	373	9.237	9.537	0.377	+10	642	365	9.777	0.088	0.423 0.424
20	666	373	9.254	9.554	0.377	20	642	365	9.782	0.094	0.425
30	666	373	9.271	9.570	0.377	30	641	365	9.787	0.100	0.426
40	666	373	9.287	9.586	0.378	40	640	364	9.792	0.105	0.428
50	666	373	9.302	9.602	0.378	50	640	364	9.798	0.11 I	0.429
500	665	373	9.317	9.617	-0.379	1500	639	364	9.803	0.1×6	0.430
10	665	373	9.33 I	9.63 x	0.379	10	639	364	9.808	0.121	0.43 I
20	665	372	9.345	9.645	0.379	20	638	363	9.813	0.127	0.433
30	665	372	$9 \cdot 358$	9.659	0.380	30	637	363	9.818	0.132	0.434
40	664	372	9.372	9.672	0.380	40	637	363	9.822	0.137	0.435
50	664	372	9.384	9.685	0.381	50	636	363	9.827	0.142	0.437
600	664	372	9.397	9.697	0.3^{81}	1600	635	363	9.832	0.147	0.438
10	664	372	9.409	9.709	0.382	10	635	362	9.837	0.153	0.439
20	663	372	9.420	9.72 I	0.383	20	634	362	9.84 I	0.158	0.447
30	663	372	9.432	9.732	0.383	30	633	362	9.846	0.163	0.442
40	663 662	372 372	9.443	9.744	0.384	40	632	362	9.851	0.168	0.443
50 700	662	372	9.453	9.755	0.384	50	632	361	9.855	0.173	0.445
700 10	662	372 371	9.464	9.765	0.385	1700	631	$36 x$	9.860	0.178	0.446
20	662	371	9.474 9.484	9.7786 9.786	0.386 0.386	10	630 630	361	9.864 9.869	0.182	0.448
30	66 I	371	9.494	9.796	0.387	30	629	360	9.873	0.192	0.449 0.450
40	661	371	9.504	9.806	-. 387	40	628	360	9.878	0.197	0.452
50	661	37 x	9.513	9.816	0.388	50	627	360	9.882	0.202	0.453
800	660	37 I	9.523	9.825	0.389	1800	627	360	9.886	0.206	0.455
10	660	371	9.532	9.834	0.389	10	626	359	9.890	0.211	0.456
20	659	371	$9.54{ }^{1}$	9.843	0.390	20	625	359	9.895	0.216	0.458
30	659	37 I	9. 549	9.852	0.391	30	624	359	9.899	0.220	0.459
40	659 658	370	9.558	9.861	0.392	40	624	359	9.903	0.225	0.46 x
900	658	370	9. 566	9.870	0.392	50	623	358	9.907	0.229	0.163
9	657	370 370	9.575 9.583	9.878 9.886	0.393 0.394	1900 10	622	358	9.911	0.234	0.464
20	657	370	9.591	9.895	0.395	20	620	358 358	9.915	0.239	0.466
30	657	370	9.598	9.903	0.396	30	620	357	9.923	0.248	0.469
40	656 656	370	9.606	9.910	0.396	40	619	357	9.927	0.252	0.470
50	656	369	9.614	9.918	0.397	50	618	357	9.931	0.256	0.472
1000	655	369	9.621	9.926	0.398	20.00	617	357	9.935	0.261	0.474

Table 15. LOGARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION. UNIT = THE ENGLISH FOOT.
[Derivation and use of table explained on p. lx.]

ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}	ϕ	a_{1}	$b_{2}=c_{2}$	a_{2}	b_{2}	c_{2}
$20^{\circ} 00^{\prime}$	7-99617	7.99357	9.935	0.261	0.474	$30^{\circ} 00^{\prime}$	7.99558	7.99337	0.135	0.496	0.593
10	616	356	9.939	0.265	0.475	Io	557	337	0.138	0.500	0.595
20	615	356	9.943	0.270	0.477	20	556	336	0.141	0.503	0.598
30	615	356	9.947	0.274	0.479	30	555	336	0.144	0.507	0.600
40	614	355	9.951	0.278	0.480	40	554	335	0.146	0.51 I	0.603
50	613	355	9.955	0.282	0.482	50	553	335	0.149	0.514	0.605
2100	612	355	9.958	0.287	0.484	3100	552	335	0.152	0.518	0.607
го	6ir	355	9.962	0.291	0.486	10	550	334	0.155	0.522	0.610
20	610	354	9.966	0.295	0.487	20	549	334	0.158	0.525	0.612
30	609	354	9.970	0.299	0.489	30	548	333	0.161	0.529	0.615
40	608	354	9.973	0.304	0.491	40	547	333	0.164	0.532	0.617
50	608	353	9.977	0.308	0.493	50	546	333	0.166	0.536	0.619
2200	607	353	9.981	0.312	0.494	3200	545	332	0.169	0.540	0.622
10	606	353	9.984	0.316	0.496	10	544	332	0.172	0.543	0.624
20	605	353	9.988	0.320	0.498	20	542	332	0.175	0.547	0.627
30	604	352	9.991	0.324	0.500	30	541	33 I	0.177	0.550	0.629
40	603	352	9.995	0.328	0.502	40	540	33 I	0.180	0.554	0.632
50	602	352	9.998	0.332	0.503	50	539	33°	0.183	0.558	0.634
2300	601	351	0.002	0.336	0.505	3300	538	330	0.186	0.561	0.637
10	600	351	0.005	0.340	0.507	10	537	330	0.188	0.565	0.639
20	600	351	0.009	0.344	0.509	20	535	329	0.191	0.568	0.642
30	599	350	0.012	0.348	0.511	30	534	329	0.194	0.572	0.644
40	598	350	0.016	0.352	0.513	40	533	328	0.197	0.575	0.647
50	597	350	0.019	0.356	0.515	50	532	328	0.199	0.579	0.650
2400	596	349	0.023	0.360	0.517	3400	531	328	0.202	0.583	0.652
10	595	349	0.026	0.364	0.518	10	529 528	327	0.205	0. 586	0.655
20	594	349	0.029	0.368	0.520	20	528	327	0.208	0.590	0.657
30	593	348	0.033	0.372	0.522	30	527	326	0.210	0.593	0.660
40	592	348	0.036	0.376	0.524	40	526	326	0.213	0.597	0.663
50	591	348	0.039	0.380	0.526	50	525	326	0.216	0.600	0.665
2500	590	347	0.043	0.384	0.528	3500	523	325	0.218	0.604	0.668
10	588	347	0.046	0.388	0. 530	10	522	325	0.221	0.608	0.671
20	588	347	0.049	0.392	0-532	20	521	324	0.224	0.611	0.673
30	587	346	0.052	0.396	0.534	30	520	324	0.226	0.615	0.676
40	586	346	0.056	0.399	0.536	40	519	324	0.229	0.618	0.679
50	585	346	0.059	0.403	0.538	50	517	323	0.232	0.622	0.68 I
2600	584	345	0.062	0.407	0.540	3600	516	323	0.234	0.625	0.684
10	583	345	0.065	0.411	0.543	10	515	322	0.237	0.629	0.687
20	582	345	0.068	0.415	0.545	20	514	322	0.239	0.632	0.689
30	581	344	0.072	0.418	0.547	30	512	322	0.242	0.636	0.692
40°	580	344	0.075	0.422	0.549	40	511	32 L	0.245	0.640	0.695
50	579	344	0.078	0.426	0.551	50	510	32 I	0.247	0.643	0.698
2700	578	343	0.08 I	0.430	0.553	3700	509	320	0.250	0.647	0.700
10	577	343	0.084	0.433	0.555	10	507	320	0.253	0.650	0.703
20	576	343	0.087	0.437	0.557	20	506	320	0.255	0.654	0.706
30	575	342	0.090	0.441	0.559	30	505	319	0.258	0.657	0.709
40	574	342	0.093	0.445	0.562	40	504	319	0.260	0.661	0.712
50	573	342	0.096	0.448	0.564	50	503	318	0.263	0.665	0.715
2800	571	341	0.099	0.452	0.566	$3^{8} 00$	501	318	0.266	0.668	0.717
10	570	341	0.102	0.456	0. 568	10	500	317	0.268	0.672	0.720
20	569	341	0. 105	0.460	0.570	20	499	317	0.271	0.675	0.723
30	568	340	0.108	0.463	0.573	30	498	317	0.273	0.679	0.726
40	567	340	0.1	0.467	0.575	40	496	316	0.276	0.683	0.729
50	566	340	0.114	0.471	0.577	50	495	316	0.278	0.686	0.732
2900	565	339	0.117	0.474	0.579	39 \%	494	315	0.28 I	0.690	0.735
10	564	339	0.120	0.478	0.582		492	315	0.284	0.693	0.738
20	563	338	0.123	0.482	0.584	20	49 I	315	0.286	0.697	0.741
30	562	338	0.126	0.485	0.586	$3{ }^{\circ}$	49°	314	0.289	0.701	0.744
40	561	338	0. 129	0.489	0.588	40	489	314	0.291	0.704	0.747
50	560	337	0.132	0.493	0.591 0.593	50	487	313 313	0.294	0.708 0.711	0.750 0.753
3000	558	337	0.135	0.496	0.593	4000	486	313	0.296	0.711	0.753

Table 15.
LOGARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.

UNIT = THE ENGLISH FOOT.
[Derivation and use of table explained on p. Ix.]

ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}	ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}
$40^{\circ} 00^{\prime}$	7.99486	7.99313	0.296	0.711	0.752	$50^{\circ} 00^{\prime}$	7.99409	7.99287	0.448	0.939	0.955
10	485	312	0.299	0.715	0.755	10	408	287	0.450	0.944	0.958
20	484	312	0.301	0.719	0.759	20	407	287	0.453	0.948	0.962
30	482	312	0.304	0.722	0.762	30	406	286	0.455	0.952	0.966
40	481	311	0.307	0.726	0.765	40	404	286	0.458	0.956	0.970
50	480	3 II	0.309	0.730	0.768	5°	403	285	0.460	0.950	0.974
4100	479	310	0.312	0.733	0.771	5100	402	285	0.463	0.964	0.978
	477	310	0.314	0.737	0.774	10	401	284	0.466	0.968	0.982
20	476	309	0.317	0.740	0.777	20	399	284	0.468	0.972	0.985
30	475	309	0.319	0.744	0.780	30	398	284	0.47 I	0.976	0.989
40	473	309	0.322	0.748	0.783	40	397	283	0.473	0.981	0.993
50	472	308	0.324	0.75 I	0.786	50	396	283	0.476	0.985	0.997
4200	471	308	0.327	0.755	0.789	5200	394	282	0.478	0.989	1.001
10	470	307	0.329	0.759	0.792	10	393	282	0.48 I	0.993	1.005
20	468	307	0.332	0.762	0.796	20	392	281	0.484	0.998	1.009
30	467	306	0.334	0.766	0.799	30	391	281	0.486	1.002	1.0r3
40	466	306	0.337	0.770	0.802	40	389	281	0.489	1.006	1.017
50	464	306	0.339	0.774	0.805	50	388	280	0.491	1.010	1.021
4300	463	305	0.342	0.777	0.808	5300	387	280	0.494	1.015	1.025
10	462	305	0.344	0.781	0.812	10	386	279	0.497	1.019	1.030
20	461	304	0.347	0.785	0.815	20	384	279	0.499	1.023	1.034
30	459	304	0.349	0.788	0.818	30	383	279	0.502	1.028	1.038
40	458	303	0.352	0.792	0.821	40	382	278	0.505	1.032	1.042
50	457	303	0.354	0.796	0.824	50	381	278	0.507	1.036	1.046
4400	455	303	0.357	0.800	0.828	5400	379	277	0.510	1.041	1.050
10	454	302	0.359	0.803	0.831	10	378	277	0.512	1.045	I. 055
20	453	302	0.362	0.807	0.834	20	377	277	0.515	1.049	1.059
30	452	301	0.364	0.811	0.838	3°	376	276	0.518	1.054	1.063
40	450	301	0.367	0.815	0.84 I	40	375	276	0.520	1.058	1.067
50	449	300	0.370	0.818	0.844	50	373	275	0.523	1.063	1.072
4500	448	300	0.372	0.822	0.848	5500	372	275	0.526	1.067	1.076
10	446	300	0.375	0.826	0.851	10	371	275	0.528	1.072	1.080
20	445	299	0.377	0.830	0.854	20	370	274	0.531	1.076	1.084
30	444	299	0.380	0.833	0.858	30	369	274	0.534	1.081	1.089
40	443	298	0.382	0.837	0.861	40	367	273	0.537	1.085	1.093
50 4600	441	298	0.385	0.841	0.865	50	366	273	0.539	1.090	1.098
4600 10	440	297	0.387	0.845	0.868	5600	365	273	0.542	1.094	1.102
20	439	297	0.390	0.849	0.872	10	364	272	0.545	1.099	1.106
30	436	296		0.856		20	363	272	0.547	1.104	1.111
40	435	296	0.397	0.860	0.882	40	360	271	0.550	I.108	1.115
50	434	295	0.400	0.864	0.885	50	359	271 271	0.553 0.556	1.113	1.120 1.124
4700	432	295	0.402	0.868	0.889	57.00	358	270	0.558	1.122	1.129
10	431	294	0.405	0.872	0.892	570	357	270	0.558 0.561	1.122	1.129 1.134
20	430	294	0.407	0.876	0.896	20	356	269	0.564	$1.13{ }^{2}$	1.138
30	428	294	0.410	0.880	0.900	30	354	269	0.567	1.137	1.143
40	427	293	0.412	0.884	0.903	40	353	269	0.569	1.141	1.147
	426	293	0.415	0.888	0.907	50	352	268	0.572	I.I 46	1.152
4800 10	425	292	0.417	0.891	0.910	5800	351	268	0.575	I. 151	1.157
20	422	292	0.420 0.422	0.895 0.899	0.914	10	350	267	0.578	1.156	1.162
30	421	291	0.425	0.903	0.921	30	349	267	0.581	1.16I	I. 166
40	420	291	0.427	0.907	0.925	40	347 346	266	0.583	1.166	1.171
50	418	290	0.430	0.911	0.929	50	345	266	0.589	1.175	1.176 1.181
4900			0.432	0.915	0.932	5900	344	266	0.592	1.180	1.185
10 20	416 414	289	0.435	0.919	0.936	10	343	265	0. 595	1.185	1.190
30	414 413	289	0.438	0.923	0.940	20	342	265	0. 598	1.190	I. 195
40	412	288	-0.443	0.927	0.943	30	341	264	0.600	1.195	1.200
50	411	288	0.445	0.935	0.951	50	331 338	264	0.603	1.200	1.205
5000	409	287	0.448	0.939	0.955	6000	337	263	0.609	1.210	1.210 I.215

Smithsonian Tables.
[Derivation and use of table explained on p. lx.]

ϕ	a_{I}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}	ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}
$60^{\circ} 00^{\prime}$	7.99337	7.99263	0.609	1.210	1.215	$70^{\circ} 00^{\prime}$	7.99278	7.99244	0.809	I. 575	1.576
10	336	263	0.612	1.216	1.220	10	277	243	0.813	1.583	1.584
20	335	263	0.615	1.221	1.225	20	277	243	0.817	I. 590	1.591
30	334	262	0.618	1.226	1. 230	30	276	243	0.821	1.598	1.599
40	333	262	0.621	1.231	1.235	40	275	242	0.825	I. 605	т. 606
50	332	261	0.624	1.236	I. 240	50	274	242	0.829	1.613	1.614
6100	331	261	0.627	1.241	1.245	7100	273	242	0.833	1.621	1.621
10	329	261	0.630	1.247	1.251	10	273	242	0.837	1.629	1.629
20	328	260	0.633	1.252	1. 256	20	272	241	0.841	1.636	1.637
30	327	260	0.636	1.257	1.261	30	271	241	0.845	1.644	r. 645
40	326	260	0.639	1.263	1. 266	40	270	241	0.849	1.652	1.653
50	325	259	0.642	1.268	I. 272	50	269	24 I	0.854	1.660	1.661
6200	324	259	0.645	1.273	1.277	7200	269	240	0.858	1. 669	1.669
10	323	259	0.648	1.279	1.282	10	268	240	0.862	1.677	1.677
20	322	258	0.651	I. 284	1. 288	20	267	240	0.866	1.685	1.686
30	321	258	0.654	1.290	1.293	30	266	240	0.871	1.694	1.694
40	320	257	0.657	1.295	1.298	40	266	239	0.875	1.702	1.702
50	319	257	0.660	1.301	1.304	50	265	239	0.880	1.710	1.711
6300	318	257	0.663	1.306	1. 309	7300	264	239	0.884	1.719	1.720
10	317	256	0.666	1.312	I. 315	10	264	239	0.889	1.728	1.728
20	316	256	0.669	1.318	1.320	20	263	238	0.893	1.737	1.737
30	315	256	0.672	1.323	1.326	30	262	238	0.898	1.745	1. 746
40	314	255	0.676	1.329	1.332	40	261	238	0.903	1.754	I. 755
50	313	255	0.679	1.335	1. 337	50	26 I	238	0.907	1.763	I. 764
6400	312	255	0.682	1.34I	I. 343	7400	260	238	0.912	1.772	1.773
10	311	254	0.685	1.346	1. 349	10	259	237	0.917	1.782	1.782
20	310	254	0.688	1.352	I. 355	20	259	237	0.922	1.791	1.791
30	309	254	0.692	1. 358	1.360	30	258	237	0.927	1.800	1.801
40	308	253	0.695	1.363	I. 366	40	257	237	0.931	1.810	r. 810
50	307	253	0.698	1.370	r. 372	50	257	236	0.936	1.820	ז. 820
6500	306	253	0.701	1.376	I. 378	7500	256	236	0.941	1.829	1. 830
10	305	252	0.705	1. 382	1.384	10	255	236	0.946	1.839	1. 839
20	304	252	0.708	I. 388	I. 390	20	255	236	0.952	1.849	I. 849
30 40	303	252	0.711	1.394	I. 396	30	254	236 235	0.957	1.859 r 869	1.859 1. 869
40	302 301	251 251	0.715 0.718	1.400 1.406	1.402 1.408	40	254 253	235 235	0.962	1.869 I .879	1.869 r .880
50 6600	301 300	251 251	0.718 0.721	1.406	1.408 1.414	50 7600	253	235	0.967	1.890	1. 890
Io	299	250	0.725	I.419	1.421	10	252	235	0.978	1.900	1.901
20	298	250	0.728	r .425	1.427	20	251	235	0.984	1.917	1.911
30	297	250	0.732	1.432	1.433	30	250	234	0.989	1.922	1.922
40	296	249	0.735	1.438	I. 440	40	250	234	0.995	1.933	1.933
50	295	249	0.739	1.444	1.446	50	249	234	1.000	1.944	1.944
6700	294	249	0.742	1.45	I. 452	7700	249	234	1.006	1.955	1.955
10	293	249	0.746	1.457	1.459	10	248	234	1.012	1.966	1.966 1.978
20	292	248	0.749	I. 464	1.465	20	248	233	1.018	1.978	1.978
30	291	248	0.753	1.470	1.472	30	247	233	1.024	1.989	1.989
40	290	248	0.756	1.477	I. 478	40	247	233	1.030 1.036	2.001	2.001
50	289	247	0.760	1.484	I. 485	50	246	233	1.036	2.013	2.013
6800	289	247	0.763	I. 491	1.492	7800	245	233	1.042	2.025	2.025
10	288	247	0.767	1.497	1.499	10	245	233	1.048	2.037	2.037 2.050
20	287	246	0.771	1.504	1.505	20	244	232	1.054	2.050	2.050 2.062
30	286	246	0.774	I.51I	1.512	30	244	232	1.061	2.062	$\begin{aligned} & 2.062 \\ & 2.075 \end{aligned}$
40	285	246	0.778	1.518	1.519 I. 526	40 50	243	232 232	1.074	2.088	2.088
50 6900	284	246	0.782 0.786	1.525 1.532	1.526 1.533	50 7900	243	232 232	1.074	2.101	2.101
69 10 10	282	245	0.786 0.789	I. 539	1.533 1.540		242	232	1.087	2.114	2.114
20	282	245	0.793	I. 546	1. 547	20	242	231	1.094	2.128	2.128
30	281	244	0.797	1.553	1.554	30	241	231	1.101	2.142	2.142
40	280	244	0.801	1.56 r	1.562	40	241	231	1.108	2.156	2.156
50	279	244	0.805	1.568	1.569	50	240	231	1.116	2.170	2.170
7000	278	244	0.809	I. 575	1.576	8000	240	231	1.123	2.184	2.184

[Derivation and use of table explained on p. 1x.]

ϕ	a_{1}	$\delta_{1}=c_{1}$	a_{2}	b_{2}	c_{2}	ϕ	a_{1}	$\delta_{\text {I }}=c_{\text {I }}$	a_{2}	B_{3}	c_{2}
$0^{\circ} 00^{\prime}$	8.51268	8.50973	- ${ }^{\infty}$	- ∞	I. 404	$10^{\circ} 00^{\prime}$	8.51254	8.50968	0.653	0.958	1.430
10	268	973	8.871	9.169	1.404	10	254	968	0.660	0.965	1.431
20	268	973	9.172	9.470	1.404	20	253	968	0.668	0.973	1.432
30	268	973	9.348	9.646	1.404	30	253	968	0.675	0.980	1.433
40	268	973	9.473	9.771	1.404	40	253	968	0.682	0.987	1.434
50	268	973	9.570	9.868	1.404	50	252	967	0.689	0.995	1.435
100	267	973	9.649	9.947	I. 404	1100	252	967	0.695	1.002	1.436
10	267	973	9.716	0.014	1.404	10	251	967	0.702	1.009	1.436
20	267	973	9.774	0.072	1.404	20	251	967	0.709	1.015	1.437
30	267	973	9.825	0.123	1.405	30	250	967	0.715	1.022	1.438
40	267	973	9.871	0.169	1.405	40	250	967	0.722	1.029	1.439
50	267	973	9.912	0.211	1.405	50	249	966	0.728	1.035	1.440
200	267	972	9.950	0.248	1.405	1200	249	966	0.734	1.042	1.441
10	267	972	9.985	0.283	1.405	10	248	966	0.740	1.048	1.442
20	267	972	0.017	0.315	1.405	20	248	966	0.746	1.055	1.444
30	266	972	0.047	0.346	1.406	30	247	966	0.752	1.061	1.445
40	266	972	0.075	0.374	1.406	40	246	966	0.758	1.067	1.446
50	266	972	0.101	0.400	1.406	50	246	965	0.764	1.073	1.447
300	266	972	0.126	0.425	1. 406	1300	245	965	0.770	1.080	1.448
10	266	972	0.150	0.449	I. 407	10	245	965	0.776	1.086	1.449
20	266	972	0.172	0.471	1.407	20	244	965	0.781	1.092	1.450
30	266	972	0.193	0.492	1.407	30	244	965	0.787	1.097	1.451
40	266	972	0.214	0.513	1.408	40	243	964	0.792	1.103	1.452
50	266	972	0.233	0.532	1.408	50	242	964	0.798	1.109	1.454
400	265	972	0.252	0.551	1. 408	1400	242	964	0.803	1.115	1.455
10	265	972	0.269	0.569	I. 409	10	241	964	0.809	1.120	1.456
20	265	972	0.286	0.586	1.409	20	241	964	0.814	1.126	I. 457
30	265	972	0.303	0.602	I. 409	30	240	963	0.819	1.132	I. 458
40	265	972	0.319	0.618	1.410	40	239	963	0.824	1.137	1.460
50	264	972	0.334	0.634	1.410	50	239	963	0.830	1.143	I-46I
500	264	972	0.349	0.649	I.4II	1500	238	963	0.835	1.148	1.462
10	264	971	0.363	0.663	1.411	10	237	963	0.840	1.153	1.463
20	264	971	0.377	0.677	1.411	20	237	962	0.845	I. 159	1.465
30	264	971	0.390	0.691	1.412	30	236	962	0.850	1.164	1.466
40	263	971	0.404	0.704	1.412	40	235	962	0.854	1.169	1.467
50	263	971	0.416	0.717	1.413	50	235	962	0.859	1.174	1.469
600	263	971	0.428	0.729	1.413	1600	234	961	0.864	1.179	1.470
10	263	971	0.440	0.741	1.414	10	233	961	0.869	1.185	1.471
20	262	971	0.452	0.753	1.415	20	233	961	0.873	1.190	1.473
$3{ }^{\circ}$	262	971	0.464	0.764	1.415	30	232	961	0.878	1.195	1.474
40	262	971	0.475	0.776	1.416	40	231	961	0.883	1.200	1.475
50 700	261	971	0.485	0.787	1.416	50	231	960	0.887	1.205	I. 477
700	261	970	0.496	0.797	1.417	1700	230	960	0.892	1.210	1.478
10	261	970	0.506	0.808	1.417	10	229	960	0.896	1.214	1.480
20	260	970	0.516	0.818	I. 418	20	228	960	0.901	1.219	1.48I
30	260	970	0.526	0.828	1.419	30	228	959	0.905	1.224	I. $4^{88} 2$
40	260	970	0.536	0.838	1.419	40	227	959	0.910	1.229	I.484
50 800	259	970	0.545	0.848	1.420	50	226	959	0.914	1.234	I. 485
800	259	970	0.555	0.857	I.421	1800	225	959	0.918	1.238	1.487
10	259	970	0.564	0.866	1.421	10	225	958	0.922	1.243	1.489
30	258	970	0.573	0.875	1.422	20	224	958	0.927	1.248	1.490
30 40		969	0.58 I 0.590	0.884	1.423	30	223	958	0.931	1.252	r.49r
40	258 257	969 969	0.590	0.893	1.424	40	223	958	0.935	I. 257	I. 493
900	257	969	0.598 0.607	0.902	1.424	50	222	957	0.939	1.261	1.495
10	256	969	0.615	0.918	1.425 1.426	1900 10	221 220	957	0.943	1.266	1.496 1.498
20	256	969	0.623	0.927	I. 427	20	219	957	0.951	1.275	1.499
30	256	969	0.630	0.935	1.428	30	218	956	0.955	1.279	1.501
40 50	255	969	0.638	0.942	1.428	40	218	956	0.959	1.284	1.502
50 10 00	255 254	968	0.646	0.950	1.429	50	217	956	0.963	1. 288	I. 504
1000	254	968	0.653	0.958	1.430	2000	216	955	0.967	1.293	1. 506

Table 16. LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE METRE.
[Derivation and use of table explained on p. lx.]

ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}	ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}
20 ${ }^{\circ} 00^{\prime}$	8.51216	8.50955	0.967	1.293	1. 506	$30^{\circ} 00^{\prime}$	8.51 57	8.50936	I. 167	1. 528	1.625
10	215	955	0.971	1.297	I. 507	10	156	936	1.170	I. 532	1.627
20	214	955	0.975	1.301	1. 509	20	155	935	1.173	I. 535	1.630
30	214	955	0.979	1. 306	I.511	30	154	935	1.176	I. 539	1.632
40	213	954	0.983	1.310	1.512	40	153	934	1.178	I. 543	1. 635
50	212	954	0.987	1.314	1.514	50	152	934	1.181	I. 546	1.637
2100	211	954	0.990	1.319	1.516	3100	151	934	1.184	I. 555°	1.639
10	210	953	0.994	1.323	1.518	10	149	933	1.187	I. 554	I. 642
20	209	953	0.998	1.327	1.519	20	148	933	1.190	1.557	1.644
30	208	953	1.002	1.331	1.52I	30	147	933	1.193	1.561	1. 646
40	207	953	1.005	1.336	1. 523	40	146	932	1.195	1.564	1. 649
50	207	952	1.009	I. 340	1.524	50	145	932	1.198	1. 568	1.651
2200	206	952	1.013	I. 344	1. 526	3200	144	931	1.201	1. 572	1.654
10	205	952	1.01	I. 348	1. 528	10	143	931	1.204	I. 575	1. 656
20	204	951	1.020	I. 352	1.530	20	141	931	1.207	I. 579	1. 659
30	203	951	1.023	I. 356	1. 532	30	140	930	I. 209	I. 582	1.66I
40	202	951	1.027	1.360	I. 534	40	± 39	930	1.212	I. 586	I. 664
50	201	951	1.030	1. 364	1.535	50	138	929	1.215	1.590	1.666
2300	200	950	1.034	1. 368	I. 537	3300	137	929	1.218	1.593	1. 669
10	199	950	1.037	1.372	I. 539	10	136	929	1.220	1. 597	1. 671
20	198	950	1.041	1.376	1.541	20	134	928	1.223	1.600	1. 674
30	197	949	1.044	1.380	I. 543	30	133	928	1.226	I. 604	1. 676
40	197	949	1.048	I. 384	1. 545	40	132	927	1.229	1.607	1.679
50	196	949	1.051	1.388	1.547	50	131	927	1.231	I.6II	1.682
2400	195	948	1.055	1.392	I. 549	3400	130	927	I. 234	1.615	I. 684
10	194	948	1.058	I.396	1.55°	10	128	926	I. 237	1.618	1.687
20	193	948	1.061	1.400	1.552	20	127	926	1.239	1.622	1.689
30	192	947	1.065	1.404	I. 554	30	126	925	1.242	1.625	1692
40	191	947	1.068	1.408	1.556	40	125	925	1.245	1.629	1. 695
50	190	947	1.071	1.412	1.558	50	124	925	1.248	1.632	I. 697
2500	189 188	946	1.075	1.416	1. 560	3500	122	924	1.250	1. 636	1.700
10	188	946	1.078	1.420	1. 562	10	121	924	1.253	I. 639	1.702
20	187	946	1.081	1.424	I. 564	20	120	923	1.256	1.643	1.705
30	186	945	1.084	1.427	1.566	30	119	923	1.258	1. 647	1.708
40	185	945	1.088	1.431	I. 568	40	118	923	1.261	1.650	1.711
50	184	945	1.091	1.435	1.570	50	116	922	1.264	1.654	1.713
2600	183	944	1.094	1.439	1. 572	3600	115	922	1.266	1.657	1.716
10	182	944	1.097	1.443	1. 575	10	114	921	1.269	1.66I	1.719
20	181	944	1.100	1.447	1. 577	20	113	921	1.271	1.664	1.721
30	180	943	1.104	I. 450	1. 579	30	11	921	1.274	I. 668	1.724
40	179	943	1.107	1.454	1.581	40	110	920	1.277	1.672	1.727
50	178	943	I.IIO	1.458	1.583	50	109	920	1.279	1.675	1.730
2700	177	942	1.113	1.462	1. 585	3700	108	919	1.282	1.679	1.732
10	176	942	1.116	1. 465	I. 587	10	105	919	1. 288	1.682	1.735 1738
20	175	942	1.119	1.469	1.589	20	105	919	1.287	I. 686	1.738
30	174	941	I. 122	1.473	1.591	30	104	918	1.290	1.689	I.741
40	172	941	1.125	1.477	1. 594	40	103	918	1.292 1.295	1.693 I. 697	1.744 1.747
50	171	941	1.128	1.480	1. 596	50	102	917	1.295 1.298	1.697	1.747
2800	170	940	1.13I	1.484	1.598	3800 10	100	917 916		1.700 1.704	1.749 1.752
10	169 168	940 940	I.I 34 I.1 37 I.	1.488 1.492	1.600 I.602 1.	10	099 098	919	1.300 1.303	1.704 1.707	1.752 1.755
30	167	939	$\underline{1.140}$	r. 495	1. 605	30	097	916	1.305	1.711	1.758
40	166	939	I.I43	I. 499	1.607	40	095	915	1.308	1.715	1.761
50	165	938	I.I46	1.503	1.609	50	094	915	1.310	1.718	1.764
2900	164	938	I.I49	1.506	1.611	3900	093	914	1.313	1.722	1.767
10	163	938	I.152	1.510	1.614		092	914	1.316	1.725	I.770
20	162	937	I.155	1.514	1.616	20	090	914	1.318	1.729	1.773
30	161	937	1.158	1.517	1.618		089	913	1.321	1.733	1.776 I. 779
40 50	160 158	937 936	1.161 1.164	1.521 1.525	1.620 1.623		088	913 912	1.323 1.326	1.733 1.740	1.779 I .78 I
50 3000	158 157	936	1.164 I.167	1.525 1.528	1.623 1.625	+ 40	085	912	1. 328	1.743	1. 784

[Derivation and use of table explained on p. 1x.]

ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}	ϕ	$a_{\text {I }}$	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}
$40^{\circ} 00^{\prime}$	8.51085	8.50912	1.328	1.743	1.784	$50^{\circ} 00^{\prime}$	8.51008	8.50886	1.480	1.971	I. 987
10	084	9 II	I.331	1.747	1.787	10	007	886	1.482	1.975	1. 990
20	083	911	1.333	1.751	1.790	20	006	885	1.485	1.980	1.994
30	081	911	1.336	1.754	1.793	30	005	885	1.487	1.984	1.998
40	080	910	1.338	1.758	1.797	40	003	885	1.490	1.988	2.002
50	079	910	1.341	1.762	1.800	50	002	884	1.492	1.992	2.006
4100	078	909	1.344	1.765	1.803	5100	001	884	1.495	1.996	2.010
	076	909	I. 346	I. 769	1.806	10	000	883	1.498	2.000	2.014
20	075	908	1.349	1.772	1.809	20	8.50998	883	1.500	2.004	2.017
30	074	908	1.351	1.776	1.812	30	997	882	1.503	2.008	2.02I
40	072	908	1.354	1.780	1.815	40	996	882	1.505	2.013	2.025
50	071	907	1.356	1.783	I.818	50	994	882	1.508	2.017	2.029
4200	070	907	1.359	1.787	1.821	5200	993	881	1.510	2.021	2.033
10	.069	906	1.361	1.791	1.824	10	992	881	I. 513	2.025	2.037
20	067	906	1. 364	1.794	1.828	20	991	880	1.516	2.030	2.041
30	066	905	1.366	1.798	1.831	30	990	880	1.518	2.034	2.045
40	065	905	I. 369	1.802	1.834	40	988	880	1.521	2.038	2.049
50	063	905	1.371	1.805	1.837	50	987	879	1.523	2.042	2.053
4300	062	904	1.374	1.809	1.840	5300	986	879	1. 526	2.047	2.057
	061	904	1.376	1.813	1.843	10	985	878	1.529	2.05 I	2.062
20	060	903	I. 379	1.817	1.847	20	983	878	1.531	2.055	2.066
30	058	903	1.381	1.820	1.850	30	982	877	1.534	2.060	2.070
40	057	902	1.384	1.824	1.853	40	981	877.	I. 537	2.064	2.074
50	056	902	1.386	1.828	1.856	50	980	877	I. 539	2.068	2.078
4400	054	902	I. 389	1.832	1.860	5400	978	876	1.542	2.073	2.082
10	053	901	1.391	1.835	1.863	10	977	876	1.544	2.077	2.086
20	052	901	I. 394	1.839	1.866	20	976	875	1. 547	2.081	2.091
30	051	900	1.396	I. 843	1.870	30	975	875	1.550	2.086	2.095
40	049	900	I. 399	1.847	1.873	40	973	875	I. 552	2.090	2.099
50	048	899	1.401	1.850	1.876	50	972	874	1.555	2.095	2.104
4500	047	899	1.404	1.854	1.880	5500	971	874	1.558	2.099	2.108
10	045	899	1.407	1.858	1. 883	10	970	873	1. 560	2.104	2.112
20	044	898	1.409	1.862	I. 886	20	969	873	I. 563	2.108	2.116
30	043	898	I. 412	1.865	1.890	30	967	873	1.566	2.113	2.121
40	042	897	I. 414	1.869	1. 893	40	966	872	1.568	2.117	2.125
$5{ }^{50}$	040	897	1.417	1.873	1.897	50	965	872	1.57 I	2.122	2.130
4600 10	039 038	896 896	1.419	1.877	1.900	5600	964	871	1.574	2.126	2.134
то	-038	896 896	1.422 1.424	1.881 1.885	1.903 1.907	10	963	871	1. 577	2.131	2.138
20	036	896	1.424	1.885	1.907	20	961	871	1.579	2.136	2.143
30 40	035	895	1.427	I. 888	1.910	30	960	870	1.582	2.140	2.147
40 50	034	895	1.429	1.892	1.914	40	959	870	1.585	2.145	2.152
50 4700	033	894	1.432	1.896	1.917	50	958	869	1.588	2.150	2.156
4700 10	031 030	894 893	1.434 I. 437	1.900 1.904	1.921 1.924	57 10 10	957	869	1. 590	2.154	2.161
10	\bigcirc	893 893	1.437 $\mathbf{1} .439$	1.904 I. 908	1.924 1.928 1.932	10	956	869 868	1.593 I. 596	2.159 2.164	2.166
30	027	893	1.442	1.912	1.932	30	954	868	1.590	2.164 2.169	2.170
40	026	892	1.444	1.916	1.935	40	952	867	1.599 1.601	2.169 2.173	2.175 2.179
50	025	892	1.447	1.920	1.939	50	951	867	1.604	2.178	2.184
4800	024	891	1.449	1.923	L. 942	5800	950	867	1.607	2.183	2.189
20	022	891 800	1.452	1.927	1. 946	10	949	866	1.610	2.183	2.193
30	020	890	1.454	I.93I	I. 950	20	947	866	1.613	2.193	2.198
40	019	890	1.457 1.459	1.935 1.939	1.953 1.957	30 40	946	866	1.615	2.197	2.203
50	017	889	1.462	1.943	1.96ı	50	945 944	865	1.618	2.202	2.208 2.213
4900	016	889	I. 464	1.947	1.964	5900	943	864	1.624	2.212	2.213 2.217
10	015	888	1. 467	1.951	1.968	10	942	864	I. 627	2.217	2.2122 2.222
30	013	888	1.469	1.955	1.972	20	94 I	864	1.630	2.222	2.227
30 40	012	888 887	1.472 I. 475	1.959 1.963	1.975 $\mathbf{1} .975$ 1.989	30	939	863	1.632	2.227	2.232
50	OIO	887	1.475 1.477	1.963 1.967	1.979 1.983	40 50	938 937	863	1.635	2.232	2.237
5000	008	886	1.480	1.971	1.987	60	937	863	1.638	2.237	2.242
						60	93	862	1.641	2.242	2.247

LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE METRE.
[Derivation and use of table explained on p. lx.]

ϕ	a_{1}	$b_{1}=c_{\text {I }}$	a_{2}	b_{2}	c_{2}	ϕ	a_{1}	$b_{1}=c_{1}$	a_{2}	b_{2}	c_{2}
$60^{\circ} 00^{\prime}$	8.50936	8.50862	1.641	2.242	2.247	$70^{\circ} 00^{\prime}$	8.50877	5.50842	1.84I	2.607	2.608
10	935	862	1. 644	2.247	2.252	7	876	842	1.845	2.615	2.616
20	934	86 I	1.647	2.253	2.257	20	875	842	1. 849	2.622	2.623
30	933	861	1.650	2.258	2.262	30	875	842	1.853	2.630	2.631
40	932	861	1.653	2.263	2.267	40	874	841	1. 857	2.637	2.638
50	931	860	1.656	2.268	2.272	50	873	841	1.86 I	2.645	2.646
6100	929	860	1.659	2.273	2.277	7100	872	841	1. 865	2.653	2.653
10	928	860	1.662	2.279	2.283	10	871	841	I. 869	2.661	2.661
20	927	859	1.665	2.284	2.288	20	87 I	840	1.873	2.668	2.669
30	926	859	1.668	2.289	2.293	30	870	840	1.877	2.676	2.677
40	925	858	1.671	2.295	2.298	40	869	840	¢. 881	2.684	2.685
50	924	858	1. 674	2.300	2.303	50	868	840	I. 886	2.692	2.693
6200	923	858	1. 677	2.305	2.309	7200	868	839	1. 890	2.701	2.701
10	922	857	1.680	2.311	2.314	10	867	839	ז. 894	2.709	2.709
20	92 I	857	1.683	2.316	2.320	20	866	839	ז. 898	2.717	2.718
30	920	857	1.686	2.322	2.325	30	865	839	1.903	2.725	2.726
40	919	856	1.689	2.327	2.330	40	865	838	1.907	2.734	2.734
50	918	856	1.692	2.333	2.336	50	864	838	1912	2.742	2.742
6300	917	856	1.695	2.338	2.341	7300	863	838	1.916	2.751	2.751
10	916	855	1. 698	2.344	2.347	10	862	838	1.921	2.760	2.760
20	915	855	1.701	2.350	2.352	20	862	837	1.925	2.769	2.769
30	913	855	1.704	2.355	2.358	30	861	837	1.930	2.777	2.778
40	912	854	1.708	2.36 I	2.364	40	860	837	1.935	2.786	2.787
50	911	854	1.711	2.367	2.369	50	860	837	I. 939	2.795	2.796
6400	910	854	1.714	2.373	2.375	7400	859	836	1.944	2.804	2.805
1	909	853	1.717	2.378	2.381	10	858	836	1.949	2.814	2.814 2.823
20	908	853	1.720	2.384	2.387	20	858	836	I.954	2.823	2.823
30	907	853	1.724	2.390	2.392	30	857 856	836 836	1.958 I. 963	2.832	2.833 2.842
40	906	852 852	1.727	2.396	2.398 2.404	40 50	856 856	836 835	1.963	2.842	2.842
50	905	852	1.730	2.402 2.408	2.404	7500	855	835	1.973	2.86 I	2.861
10	903	85 I	1.737	2.414	2.416	10	854	835	1.978	2.87 I	2.871
20	902	851	I. 740	2.420	2.422	20	854	835	1.984	2.881	2.881
30	901	851	1.743	2.426	2.428	30	853	834	1.989	2.891	2.891
40	900	850	1.747	2.432	2.434	40	852	834	1.994	2.901	2.901
50	900	850	1.750	2.438	2.440	50	852	834	1.999	2.911	2.912
6600	899	850	I. 753	2.445	2.446	7600	851	834	2.005	2.922	2.922
10	898	849	1. 757	2.451	2.453	10	851	834	2.010	2.932	2.933
20	897	849	1.760	2.457	2.459	20	850	833	2.015	2.943	2.943
30	896	849	I. 764	2.464	2.465	30	849	833	2.021	2.954	2.954
40 50	895 894	848 848	1.767 1.771	2.470 2.476	2.472 2.478	40 50	849 848	833 833	2.027 2.032	2.965 2.976	2.965
50 6700	894	848 848	1.771 1.774	2.476 2.483	2.478 2.484	7700	8488	833	2.038	2.987	2.987
67	892	847	I. 778	2.489	2.491	10	847	832	2.044	2.998	2.998
20	891	847	1.781	2.496	2.497	20	847	832	2.050	3.010	3.010
30	890	847	I. 785	2.502	2.504	30	846	832	2.056	3.021	3.021
40	889	847	1.788	2.509	2.510	40	845	832	2.062	3.033	3.033
50	888	846	1.792	2.516	2.517	50	845	832	2.068	3.045	3.045
6800	887	846	1.795	2.522	2.524	7800	844	832	2.074	3.057	3.057
10	887	846	1.799	2.529	2.531	10	844	831	2.080	3.069	3.069 3.082
20	886	845	1.803	2.536	2.537	20	843	831	2.086	3.082	3.082
30	885	845	1.806	2.543	2.544	30	843	831	2.093	3.094	3.094
40	884	845	1.810	2.550	2.551	40	842 842	831 831	2.099 2.106	3.107 3.120	3.107 3.120
50 6900	883	844 844	1.814 1.818	2.557	2.558 2.565	50 79	842 841	831	2.113	3.133	3.133
10	881	844	1.821	2.57 I	2.572	10	841	830	2.119	3.146	3.146
20	880	844	1.825	2.578	2.579	20	840	830	2.126	3.160	3.160
30	880	843	1.829	2.585	2.586	30	840	830	2.133	3.174	3.174
40	879	843	I. 833	2.593	2.594	40	839	830 830	2.140 2.148	3.188 3.202	3.188 3.202
50	878	843	1.837	2.600	2.601	50	839	830 830	2.148 2.155	3.202 3.216	3.202 3.216
7000	877	842	1.84I	2.607	2.608	8000	839	830	2.155	3.216	

Table 17.
LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.
[Derivation of table explained on p. xlvi.]

Smithsonian Tableb.

Table 17.
LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.
[Derivation of table explained on p. xlvi.]

Latitude Interval.	$\begin{aligned} & \text { Latitude. } \\ & 25^{\circ} \end{aligned}$	$\begin{aligned} & \text { Latitude. } \\ & 26^{\circ} \end{aligned}$	$\underset{27^{\circ}}{\text { Latitude. }}$	$\begin{aligned} & \text { Latitude. } \\ & 28^{\circ} \end{aligned}$	Latitude.
	Feet.	Feet.	Feet.	Feet.	Feet.
$10^{\prime \prime}$	1009.49	1009.63	1009.77	1009.92	1010.07
20	2088.97	2019.25	2019. 54	2019.83	2020.13
30	3028.46	3028.88	3029.31	3029.75	3030.20
$4{ }^{\circ}$	4037.95	4038.51	4039.08	4039.67	4040.27
60	50.47 .44 6056.92	5048.13 6057.76	5048.85 6058.62	5049.58 6059.50	50.50.33 6060.40
10^{\prime}	60569.2	60577.6	60586.2	60595.0	60604.0
20	121538.5	121155.2	121172.3	121190.0	121208.0
30	181707.7	181732.7	181758.5	181785.0	181812.0
40	242276.9	2423 ro. 3	242344.7	242379.9	242416.0
50 60	302846.1	302887.9	302930.9	302974.9	303019.9
	363415.4	363465.5	363517.1	363569.9	363623.9
	30°	31°	3°	33°	34°
$\mathrm{ra}^{\prime \prime}$	1010. 22	roro. 38	rovo. 54	1010.70	roro. 86
20	2020.44	2020.75	2021.07	2021.40	2021.73
30	3030.66	3031.13	303 r .61	3032.10	3032.59
40	4040.88	4041.51	4042.15	4042.80	4043.46
50 60	5051.10 6061.32	5051.89 6062.26	5052.68 6063.22	5053.50 6064.20	5054.32 6065.19
	6061.32	6062.26	6063.22	6064.20	6065.19
ra^{\prime}	60613.2	60622.6	60632.2	60642.0	6065 r .9
20	122226.4	121245-3	121264.4	121283.9	221303.8
30	181839.7	181867.9	181896.6	181925.9	r8 r955.7
40	242452.9	242490.5	242528.8	242567.9	242607.6
5060	303066.1 363679.3	303113.2 363735.8	303161.1 363793.3	303209.9 36385.8	303259.4
	35°	36°	37°	3^{8}	39°
${ }^{10} 1$	motr. 03	roxt. 20	roir. 37	1011.55	rorr. 72
20	2022.06	2022.40	2022.75	2023.09	2023.44
30	3033.10	3033.68	3034.12	3034.64	3035.17
40	4044.13	${ }^{4044.81}$	4045.50	4046.19	4046.89
50 60	5055.16 6066.19	5056.01 6067.21	5056.87 6068.24	5057.74 6069.29	5058.61 6070.34
$1{ }^{\prime}$	6066 r .9	60672.1	60682.4	60692.9	60703.4
20	121323.9	121344-3	121364.9	121385.7	121406.7
30	18ז985.8	182016.4	182047.3	182078.6	$182 \mathrm{rio.1}$
40	242647.8	242688.5	242729.?	242771.4	2428×3.4
5060	303309.7	303360.6	3034×2.2	303464.3	303516.8
	36397 1. 7	364032.8	364094.6	364157.1	364220.2
	40°	41°	42°	43°	44°
$1{ }^{\prime \prime}$	101.9.90	1012.08	ro12.25	1012.43	rox2.61
20	2023.80	2024.15	2024.51	2024.87	2025.23
30	3035.70	3036.23	3036.77	3037.30	3037.84
40	4047.60	4048.31	4049.02	4049.74	4050.46
50 60	5059.50 6071.39	5060.38 6072.46	5061.28 6073.53	5062.17 6074.61	5063.07 6075.69
$1{ }^{\prime}$	60713.9	60724.6	60735-3	60746.1	60756.9
20	121427.9	121449.2	121470.6	121492.2	121513.7
30	18214 r .8	182173.8	182206.0	182238.2	182270.6
40	242855.8	242898.4	24294 I .3	${ }^{242984.3}$	243027.4
5060	303569.7	303623.0	303676.6	303730.4	303784.3
	${ }^{664283.7}$	${ }^{3} 54347.6$	3644 II.9	364476.5	364541.2
	45°	4°	47°	48°	49°
$10^{\prime \prime}$	1012.79	1012.97	1013.15	10×3.33	1013.51
20	2025.59	2025.95	2026.31	2026.67	2027.02
30	3038.38	3038.92	3039.46	3040.00	3040.54
40	405 I .18	405 5 .90	402.62	4053.34	4054.55
${ }^{50}$	5063.97 6076.77	5064.87 6077.85	5065.77 6078.93	5068.67 6080.00	5067.56 6081.08
			6078.93		
10^{\prime}	60767.7	60778.5	60789.3	60800.0	60810.8
20	121535.3	121556.9	121578.5	121600.1	121621.5
30	182303.0	182335-4	${ }^{182367.8}$	182400.1	182432.3
40	243070.6	243 r13.9	243 57.0	243200.1	243243.0
50	303838.3	303892.4 364670.8	303946.3 364735.5	304000.1 364800.2	304053.8 364864.5
60	364606.0	364670.8	${ }^{664735.5}$	364800.2	364864.5

Table 17.
LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.
[Derivation of table explained on p . x xvi.]

Latitude Interval.	Latitude. 50°	$\begin{aligned} & \text { Latitude. } \\ & 5 I^{\circ} \end{aligned}$	$\begin{aligned} & \text { Latitude. } \\ & 5^{2} \end{aligned}$	$\begin{aligned} & \text { Latitude. } \\ & 53^{\circ} \end{aligned}$	$\begin{aligned} & \text { Latitude. } \\ & 54^{\circ} \end{aligned}$	$\begin{aligned} & \text { Latitude. } \\ & 55^{\circ} \end{aligned}$
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
$\mathrm{ro}^{\prime \prime}$	1013.69	1013.87 2027.74	1014.04 2028.09	1014.22 2028.44	1014.39 2028.78	1014.56 2029.12
20	2027.38	2027.74 304160	2028.09 3042.13	2028.44 3042.65	2028.78 3043.17	2029.12 3043.68
$4{ }^{\circ}$	4054.76	+ 4055.47	4056.17	4056.87	4057.56	4058.24
50	5068.46	5069.34	5070.22	507 r .09	5071.96	5072.80
60	6082.15	6083.21	6084.26	6085.31	6086.35	6087.37
$1{ }^{\prime}$	60821.5	60832.1	60842.6	60853.1	60863.5	60873.7
20	121642.9	121664.2	121685.2	121706.2	121726.9	121747.3
30	182464.4	182496.2	182527.7	182559.2	182590.4	182621.0
40	243285.8	243328.3	243370.3	243412.3	243453.8	243494.6
5060	304107.3 364928.8	304160.4	304212.9	304265.4 365118.5	304317.3 365180.8	304368.3
				59°	60°	61°
$\mathrm{ra}^{\prime \prime}$	1014.73	1014.90	1085.06	1015.22	1015.38	1015.53
20	2029.46	2029.79	2030.12	2030.44	2030.76	2031.07
30	3044.19	3044.69^{-}	3045.18	3045.66	3046.14	3046.60
40	4058.92	4059.58	4060.24	4060.88	4061.52	4062.14
50	5073.65	5074.48	5075.30	5076.10	5076.90	5077.67
60	6088.38	6089.38	6090.36	609 r .33	6092.27	6093.20
10^{\prime}	60883.8	60893.8	60903. 6	60913.3	60922.7	60932.0
20	121767.6	121787.5	121807.2	128826.5	121845.5	121864.1
30	182651.4	182681.3	182710.8	182739.8	182768.2	182796.
$4{ }^{\circ}$	243535.2	243575.0	243614.4	243653.0	243691.0	243728.2
5060	304419.0	304468.8	304518.0	304566.3	304613.7	304660.2
	365302.8	365362.6	36542 I . 6	365479.6	365536.4	365592.2
	62°	63°	64°	65°	66°	67°
$10^{\prime \prime}$	${ }^{1015} 5.69$	1015.83	1015.98	1016.12	1016.26	1016.39
20	2031.37	2031.67	2031.96	2032.24	2032.51	2032.78
30	3047.06	3047.50	3047.94	3048.36	3048.77	3049.16
$4{ }^{\circ}$	4062.74	4063.34	4063.92	4064.48	4065.02	4065.55
50	5078.43	${ }_{6}^{5079.17}$	5079.90	5080.60	508 I .28	5081.94
60	6094.12	6095.00	6095.87	6096.71	6097.54	6098.33
ro'	60941.2	60950.0	60958.7	60967.1	60975.4	60983.3
20	121882,3	121900.1	121917.5	121934.3	1219950.7	121966.6
30	188823.5	182850.1	1888876.2	182901.4	182926.1	182949.8
40	243764.6	243800.2	243835.0	243868.6	243901.4	243933.1
5060	304705.8 365647.0	$\begin{aligned} & 304750.2 \\ & 365700.2 \end{aligned}$	$\begin{aligned} & 304793.7 \\ & 365752.4 \end{aligned}$	304835.7 365802.8	304876.8 365852.2	304916.4 365899.7
	68°	69°	70°	71°	72°	73°
$10^{\prime \prime}$	1016.52	1016.64	1016.76	1016.87	1016.98	1017.09
20	2033.03	2033.28	2033.52	2033.75	2033.96	2034.17
30	3049.55	3049.92 4066.56	3050.28	3050.62	3050.95	3051.26
40	4066.07	4066.56	400704 5083.80	4067.49 5084.36	4067.93	4068.34
${ }_{60}$	5082.58 6099.10	5083.20 6199.84	5083.80 6100.55	5084.36 6101.24	5084.91 610189	5085.43 6102.52
$1{ }^{\prime}$	6099r.o	$6 \mathrm{r998.4}$	61005.5	61012.4	61018.9	61025.2
20	121982.0	121996.8	122011.1	122524.8	122037.8	122050.3
30	182973.1	182995.2	183016.6	183037.1	183056.8	183075.5
40	243964.1	243993.6	244022.2	244049.5	244075.7	244100.6
60	304955.1	304992.0	305027.7	30506 x .9	305094.6	305125.8
	365946.1	365990.4	366033.2	$366074 \cdot 3$	366113.5	366151.0
	74°	75°	76°	77°	78°	79°
$10^{\prime \prime}$	1017.18	1017.28	1017.37	1017.45	1017.53	1017.60
20	2034.37	2034.56	2034.73	2034.90	2035.05	2035.19
30 40	3051.56 4068.74	3051.84 4069.12	3052.10 4069.46	3052.35 4069.80	3052.58	3052.79
50	5085.92	5086.40	${ }_{5086.83}$	4069.80 5087.24	4070.10 5037.63	4070.38 5087.98
60	6 ro3.11	6103.67	6104.20	6104.69	6 6105.16	50105.58
ro'	$6 \mathrm{rO31.1}$	61036.7	61042.0	61046.9	6105 r .6	61055.8
20	122062.2	122073.5	122083.9	122093.9	122103.1	122111.5
30	183093.3	183110.2	183125.9	183140.8	183154.7	183167.3
40	244124.4	244147.0	244167.8	244187.8	244206.2	244223.0
$6{ }_{60}$	305155.5 366186.6	305183.7 366230.4	305209.8	305234.7	305257,8	305278.8
60	366180.6	366220.4	366251.8	366281.6	366309.4	366334.6

Smithsonian Tables.
[Derivation of table explained on p. xlix.]

Table 18.
LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.
[Derivation of table explained on p. xlix.]

Longitude Interval.	Latitude. 25°	Latitude. 26°	Latitude. 27°	$\begin{gathered} \text { Latitude. } \\ 28^{\circ} \end{gathered}$	Latitude. 29°
	Feet.	Feet.	Feet.	Feet.	Feet.
$10^{\prime \prime}$ 20	920.03 1840.05	912.44 1824.88	904.58 1809.16	896.44 1792.88	$\begin{array}{r} 888.03 \\ \mathbf{7 7 6 . 0 6} \end{array}$
20 30	1840.05 2760.08	1824.88 2737.33	1809.16 2713.74	1792.88 2689.32	$\begin{aligned} & 1776.06 \\ & 2664.09 \end{aligned}$
30 40	2760.08 3680.11	2737.33 3649.77	27184 368.32	3585.76	3552.12
50	4600.14	4562.21	4522.89	4482.20	4440.15
60	5520.17	5474.65	$5427 \cdot 47$	5378.64	5328.18
10^{\prime}	55202.7	54746.5	54274.7	53786.4	53281.8
20	110403.3	109493.0	108549.5	107572.9	106563.5
30	165605.0	164239.5	162824.2	161359.3	159845.3
40	220806.6	218986.1	217099.0	215145.7	213×27.1
	276008.3	273732.6	271373.7	268932.2	266408.8
60	331209.9	328479.1	325648.4	322718.6	319690.6
	30°	31°	32°	33°	34°
$10^{\prime \prime}$	879.35	870.40	861.18	$85 \mathrm{s.71}$	841.97
20	1758.70	1740.80	$\mathbf{1 7 2 2 . 3 7}$	1703.41	1683.94
30	2638.04	2611.20	2583.55	2555.12	2525.91
40	3517.39	3481.59	3444.74	3406.83	3367.88
50	4396.74	4351.99	4305.92	4258.53	4209.85
60	5276.09	5222.39	5167.10	5110.24	5051.82
10^{\prime}	52760.9	52223.9	51671.0	51102.4	50518.2
20	105521.8	104447.8	103342.1	102204.8	101036.4
30	158282.6	156671.8	155013.1	153307.3	151554.6
40	2 r1043.5	208895.7	206684.2	204409.7	202072.8
50	263804.4	261519.6	258.355.2	255512.1	25259 1.0
	3 16565.3	313343.5	310026.3	306614.5	303109.2
	35°	36°	37°	3^{80}	39°
1011	831.98	822.73	8 xr .23	800.48	
20	1663.95	1643.46	1622.46	$\times 600.97$	$\begin{array}{r}1578.98 \\ \hline\end{array}$
30	2495.93	2465.19	2433.69	2401.45	2368.48
40	3327.9 Pr	3286.91	3244.92	3201.93	3157.97
50	4159.88	4108.64	4056.15	4002.42	3947.46
60	4991.86	4930.37	4867.38	4802.90	4736.95
10^{\prime}	49918.6	49303.7	48673.8	48029.0	47369.5
20	99837.2	98607.4	97347.6	96058.0	94739. 7
30	149755.8	147931.2	146021.4	144087.0	142108.6
40	199674.3	197214.9	194695.2	192116.0	189478.2
5060	249592.9	246518.6	243369.0	240145.0	236847.7
	279511.5	295822.3	292042.8	288174.0	284217.2
	40°	41°	42°	43°	44°
$10^{\prime \prime}$	$77^{8.26}$	766.79	755.08	743.15	730.98
20	1556.52	1533.58	15 r 0.17	1486.29	1461.96
30	2334.78	2300.37	2265.25	2229.44	2192.95
40	3113.04	3067.16	3020.33	2972.59	2923.93
50	3891.30	3833.94	3775.42	3715.73	3654.91
60	4669.56	4600.73	4530.50	4458.88	4385.89
10^{\prime}	46695.6	$46007 \cdot 3$	45305.0	44588.8	$43^{88} 5^{8.9}$
20	93391.2	92014.7	$906 \mathrm{ro.0}$	89177.6	87717.9
30	140086.7	138022.0	1359 ¢5.0	133766.4	${ }^{131576.8}$
40	186782.3	184029.3	181220.0	178355.2	1754.35 .8
50 60	$233477 \cdot 9$ 280173.5	230036.7 276044.0	226525.0 271830.1	222944.0 267532.8	$\begin{aligned} & 219294 \cdot 7 \\ & 263 \times 53.6 \end{aligned}$
	45°	46°	47°	48°	49°
$10^{\prime \prime}$					666.87
20	1437.19	1411.97	1386.32	1360.24	1333.75
30	2155.78	2117.96	2079.48	2040.36	2000.62
40	2874 -38	2823.94	2772.64	2720.49	2667.50
50	3592.97	3529.93	3465.80	3400.61	3334.37
60	4311.56	4235 -91	4158.96	4080.73	4001.25
$1{ }^{\prime}$	43115.6	42359.1	41589.6	40807.3	40012.5
20	8623 x .3	84718.2	83179.2	81614.6	80024.9
30	129346.9	127077.3	124768.7	122421.9	120037.4
40	172462.5	169436.5	166358.3	163229.2	160049.9
50	215578.2	212795.6	207947.9	204036.4	200062.3
60	258693.8	254154.7	249537.5	$244843 \cdot 7$	240074.8

Smithsonian Tables.
[Derivation of table explained on p. xlix.]

Longitude Interval.	Latitude. 50°	Latitude. 5°	Latitude. 52°	Latitude. 53°	Latitude. 54°	Latitude. 55°
	Feat.	Freet.	Feet.	Feet.	Feet.	Feet.
$10^{1 /}$	653.42	639.77	625.92	61 r .88	597.65	583.23
20	1306.85	1279.54	1251.84	1223.76	1195.30	1166.47
30	1960.27	1919.31	1877.76	1835.63	1792.94	1749.70
40	2613.69	2559.08	2503.68	2447.51	2390.59	2332.93
50 60	3267.12 3930.54	3198.85	3129.60	3059.39	2988.28	2916.16
60	3930.54	3838.62	$3755 \cdot 52$	3671.27	3585.89	3499 -40
10 20	39205.4	38386.2	37555.2	36712.7	35858.9	34994.0
20	78480.8	76772.4	75110.4	73425.4	71717.8	69988.0
30	117616.1	115158.6	112665.6	110138.0	107576.6	10498 I .9
40 50	156821.5	153544.8	150220.8	146850.7	$143435 \cdot 5$	$139975 \cdot 9$
50 60	196026.9 235232.3	191931.0 230317.2	187776.0 225331.2	183563.4 220276.1	179294.4 2×5153.3	$\begin{array}{r} 174969.9 \\ 209963-9 \end{array}$
	56°	57°	58°	59°	60°	61°
$\begin{aligned} & 10^{\prime \prime} \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	568.64	553.87	538.93	523.82	508.55	493.13
	1137.28	1107.74	1077.86	1047.65	1017.11	986.26
	1705.92	166 t .6r	1616.79	1571.47	1525.66	1479.38
	2274.56	2215.48	2155.72	2095.29	2034.22	1972.52
	2843.20	2769.35	2694.64	2619.12	2542.77	2465.64
	3412.83	3323.22	$3233 \cdot 57$	3142.94	3051.33	2958.77
1020	34118.3 68236.7	33232.2	32335.7 64671.5			29587.7
	68236.7	66464.4	64671.5	62858.8	61026.6	59175-5
30	102355.0	99696.6	97007.2	94288.1	91539.9	88763.2
4050	136473 -4	132928.8	120343.0	125717.5	122053.2	118351.0
	170591.7	166161.0	161678.7	157146.9	152566.5	
60	204710.0	199393.2	194014.4	188576.3	183079.8	177526.4
	62°	63°	64°	65°	66°	67°
1020	477.55	461.83	445.96	429.95	${ }_{4} 19.82$	397.55
	955.10	923.65	891.98	859.91	827.63	795.10
30	1432.66	1385.48	1337.88	1289.86	1241.44	1192.64
4050	1910.21	$1847 \cdot 3$ I	1783.84	1719.81	1655.26	1590.19
	2387.76	2309.14	2229.80	2149.76	2069.08	1987.74
60	2865.31	2770.96	2675.75	2579.72	2482.89	2385.29
1020	28653.1	27709.6	26757.5	25797.2	24828.9	23852.9
	57306.2	55419.2	53515.1	51594.4	49657.8	47705.8
3040	85959.4	83128.9	80272.6	77391.5	74486.7	71558.6
	114612.5	110838.5	107030.2	103288.7	99315.6	95411.5
5060	143265.6	138548.1	133787.7	128985.9	124144.5	119264.4
	171918.7	166257-7	160545.2	154783.1	148973.4	143117.3
	68°	69°	70°	75^{0}	72°	73°
$1^{1 /}$ 20 30 40 so 60 10^{\prime} 20 30 40 50 60	381.16 762.32	364.65 729.30	348.03 696.06	331.30 662.60	314.47 628.94	297.54 595.08
	1143.47	1093.95	1044.09	993.90	943.41	892.62
	1524.63	1458.60	1392.12	1325.20	1257.88	1190.16
	1905.79	1823.25	1740.14	1656.50	1572.34	148770
	2286.95	2187.90	2088.17	1987.81	1886.8ı	1785.23
	22869.5	21879.0	20881.7	19878.1	18868. 1	17852.3
	45739.0	43758.0	41763.5	39756.1	37736.3	35704.7
	68608.4	65637.0	62645.2	59634.2	56604.4	53557.0
	91477.9	87516.0	83527.0	79512.2	75472.6	71409.4
	114347.4 137216.9	109395.0	104408.7 125290.4	99390.3 r19368.4	94340.7 113208.8	89261.7 107114.0
	137216.9	131274.0	125290.4	$\underline{19268.4}$	113208.8	107114.0
	74°	75°	76°	77°	78°	79°
$\mathrm{ra}^{\prime \prime}$	280.52	26.3 .41	246.22	228.96	211.62	
20	561.04	526.82	492.44		423.24 63485	388.43 582.64
30	841.56	790.23	738.66	686.86	634.85	582.64
40	1122.08	1053.64	984.88	915.82	846.47	776.86
60	1402.60 1683.15	1317.06 1580,47	1231.10 1477.33	1144.78 1373.73	1058.09	971.08 $1165-29$
	1683.15	1580,47	$1477 \cdot 33$	1373.73	1269.71	1165-29
ra^{\prime}	1683 I .1	15804.7	14773.3	13737.3	12697.1	11652.9
20	33662.3	31609.3	29546.5	27474.6	25394.2	23305.8
3040	$50493 \cdot 4$	47414.0	44319.8	41211.9	38091.2	34958.7
	67324.6	63218.6	59093.0	54949.2 68686.5	50788.3 63485.4	46611.6 58264.5
5060	84155.7 100986.8	79023.3 94828.0	73866.3 88639.6	68686.5 82423.8	63485.4 76182.5	58264.5 69917.4
	100986.8	94828.0	88639.6	82423.8	76182.5	69917.4

table 19.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{25}{250 \pi}$
[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		${ }^{15}$ ' longitude.		$3{ }^{\prime}$ longitude.		45' longitude.		$1{ }^{\circ}$ longitude.	
		x	y	x	y	x	y	*	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$0^{\circ} 00^{\prime}$		4.383	. 000	8.766	. 000	13.148	. 000	17.531	. 000
15	$4 \cdot 353$	$4 \cdot 383$. 000	8.766	. 000	13.148	. 000	17.531	. 001
30	8.706	4.383	. 000	8.765	. 000	13.148	. 001	17.530	. 001
45	13.059	$4 \cdot 382$. 000	8.765	. 001	13.147	. 001	17.530	. 002
100	17.412	$4 \cdot 382$. 000	8.764	. 001	13.146	. 001	17.528	. 003
15	4.353	4.382	. 000	8.764	. 001	13.145	. 002	17.527	. 003
30	8.706	$4 \cdot 381$. 000	8.763	. 001	13.144	. 002	17.525	. 004
45	13.059	$4 \cdot 381$. 000	8.762	. 001	13.142	. 003	17.523	. 005
200	17.412	4.380	. 000	8.760	. 001	13.141	. 003	17.521	. 005
15	4.353	$4 \cdot 379$. 000	8.759	. 001	13.138	. 003	17.518	. 006
30	8.706	4.379	. 000	8.757	. 001	13.536	. 004	17.514	. 007
45	13.059	$4 \cdot 378$. 000	8.755	. 002	13.133	. 004	17.511	. 007
300	17.413	$4 \cdot 377$. 001	8.753	. 002	13.130	. 004	17.507	. 008
15	4.353	4.376	. 001	8.751	. 002	13.127	. 005	17.503	. 008
30	8.706	4.375	. 001	8.749	. 002	13.124	. 005	17.498	. 009
45	13.060	4.373	. 001	8.747	. 002	13.120	. 006	17.494	. 009
400	17.413	4.372	. 001	8.744	. 003	13.116	. 006	17.488	. 010
15	4.353	4.371	. 001	8.742	. 003	13.112	. 006	17.483	. OII
30	8.707	$4 \cdot 369$. 001	8.739	. 003	${ }^{1} 3.108$. 007	17.478	. 012
45	13.060	$4 \cdot 368$. 001	8.736	. 003	13.104	. 007	17.472	. 013
500	17.413	4.366	. 001	8.732	. 003	13.099	. 007	17.465	. 013
15	4.353	4.364	. 001	8.729	. 003	13.094	. 008	17.458	. 014
30	8.707	$4 \cdot 363$. 001	8.725	. 004	13.088	. 008	17.451	. 014
45	13.060	$4 \cdot 361$. 001	8.722	. 004	13.082	. 008	17.443	. 015
600	17.414	$4 \cdot 359$. 001	8.718	. 004	13.076	. 009	17.435	. 016
15 30	4.354 8.707	4.357	. 001	8.714 8.710	. 004	13.071	. 009	17.428	.017
30 45	8.707 13.061	4.355 4.353	. 001	8.710 8.705	. 004	13.064	. 010	17.419	. 017
45	13.061	4.353	. 001	8.705	. 004	13.058	. 010	17.410	. 018
700	17.414	4.350	. 001	8.701	. 005	13.051	. 010	17.4r:	. 019
15		4.348	. 001	8.696	. 005	${ }_{1} 3.044$. 011		
30	8.707	4.346	. 001	8.691	. 005	13.036	. 011	17.382	. 020
45	13.061	4.343	. 001	8.686	. 005	13.029	. 011	17.372	. 020
800	17.415	4.340	. 001	8.681	. 005	13.021	. 012	17.362	. 021
15		4.338	. 001		. 005	13.013	. 012	17.351	. 022
30	8.708	4.335	. 001	8.670	. 006	13.005	. 013	17.340	. 022
45	13.062	4.332	. 002	8.664	. 006	12.996	. 013	17.328	. 023
900	17.416	4.329	. 002	8.658	. 006	12.987	. 013	17.316	. 024
15	4.354 8.708	4.326	. 002	8.652	. 006	12,979	,014	17,305	. 024
30	8.708 13.062	4.323 4.320	. 0022	8.646 8.640	. 006	12.969	. 014	17.292	. 025
45	13.062	4.320	. 002	8.640	. 006	12,960	.014	17.280	. 026
1000	17.417	4.317	. 002	8.633	. 006	12.950	. 015	17,266	. 026.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $2 \sigma \delta_{00}$.
[Derivation of table explained on pp. liii - lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		${ }^{5} 5^{\prime}$ longitude.		30^{\prime} loggitude.		45^{\prime} longitude.		x° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$10^{\circ} 00^{\prime}$	$4 \cdot 317$. 002	8.633	. 006	12.950	. 015	17.266	. 026
15	4.354	4.313	. 002	8.626	. 007	12.940	. 015	17.253	. 027
30	8.709	4.310	. 002	8.620	. 007	12.930	. 015	17.240	. 027
45	13.063	$4 \cdot 306$. 002	8.6 r 3	. 007	12.919	.016	17.226	. 028
1100	17.418	$4 \cdot 303$. 002	8.606	. 007	12.908	. 016	17.211	. 029
15	$4 \cdot 355$	4.299	. 002	8. 598	. 007	12.897	. 016	17.196	. 029
30	8.709	4.295	. 002	8.591	. 007	12.886	. 017	17.182	. 030
45	13.064	4.292	. 002	8.583	. 008	12.875	. 017	17.166	. 031
1200	17.419	4.288	. 002	8.575	. 008	12.863	.017	17.150	.031
15	4.355	4.284	. 002	8.567	. 008	12.851	. 018	17.134	. 032
30	8.710	4.280	. 002	8.559	. 008	12.839	. 018	17.118	. 032
45	13.065	4.275	. 002	8.55 I	. 008	12.826	. 019	17.102	. 033
1300	17.420	4.271	. 002	8.542	. 008	12.813	. 019	17.084	. 034
15	4.355	4.267	. 002	8.534	. 009	12.800	. 019	17.067	. 034
30	8.711	4.262	. 002	8.525	. 009	12.787	. 020	17.050	. 035
45	13.066	4.258	. 002	8.516	. 009	12.774	. 020	17.032	. 035
1400	17.421	4.253	. 002	8.507	. 009	12.760	. 020	17.013	. 036
15	4.356	4.249	. 002	8.498	. 009	12.746	. 021	16.995	. 036
30	8.711	4.244	. 002	8.488	. 009	12.732	. 021	16.976	. 037
45	13.067	4.239	. 002	8.479	. 009	12.718	. 021	16.957	. 038
1500	17.423	4234	. 002	8.469	. 010	12.703	. 022	16.938	.038
15	4.356	4.229	. 002	8.459	. 010	12.688	. 022	16.918	.039
30	8.712	4.224	. 002	8.449	. 010	12.673	. 022	16.898	. 039
45	13.068	4.219	. 002	8.439	. 010	12.658	. 022	16.877	. 040
1600	17.424	4.214	. 003	8.428	. 010	12.642	. 023	16.856	. 041
15	4.356	4.209	. 003	8.417	. 010	12.626	. 023	16.835	. 041
30	8.713	4.204	. 003	8.407	. 010	12.610	. 023	16.814	. 042
45	13.069	$4 \cdot 198$. 003	8.396	. OII	12.594	. 024	16.792	. 042
1700	17.426	4.192	. 003	8.385	.orr	12.577	. 024	16.770	. 043
15	4.357	4.187	. 003	8.374	. OII	12.561	. 024	16.748	. 043
30	8.714	4.181	. 003	8.362	. 011	12.544	. 025	16.725	. 044
45	13.071	4.175	. 003	8.35 I	. 011	12.526	. 025	16.702	. 044
1800	17.427	4.170	. 003	8.339	. OLI	12.509	. 025	16.679	. 045
15	4.357	4.164	. 003	8.327	. 011	12.49 I	. 026	16.655	. 045
30	8.715	4.158	. 003	8.316	. 012	12.473	. 026	I6.631	. 046
45	13.072	4.152	. 003	8.303	. 012	12.455	. 026	16.606	. 046
1900	17.429	4.145	. 003	8.291	. 012	12.436	. 026	16.582	. 047
15	4.358	4.139	. 003	8.278	. 012	12.418	. 027	16.557	. 048
30	8.716	4.133	. 003	8.266	. 012	12.399	. 027	16.532	. 048
45	13.073	4.127	. 003	8.253	. 012	12.380	. 027	16.506	. 048
2000	17.431	4.120	. 003	8.240	. 012	12.360	. 028	16.480	. 049

Table 19.

[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR-							
		15^{\prime} longitude.		30^{\prime} longitude.		45 loagitude.		x° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inchas.	Inches.
20 ${ }^{\circ} 0^{\prime}$		4.120	. 003	8.240	. 012	12.360	. 028	16.480	. 049
15	4.358	4.114	. 003	8.227	. 012	12.340	. 028	16.454	. 050
30	8.717	4.107	. 003	8.214	. 113	12.321	. 028	16.428	. 050
45	13.075	4.100	. 003	8.200	.013	12.301	. 029	16.401	. 051
2100	17.433	4.094	. 003	8.187	.013	12.280	. 029	16.374	.051
15	4.359	4.087	. 003	8.173	.OI3	12.260	. 029	16.346	.052
30	8.718	4.080	. 003	8.159	. 013	12.239	. 029	16.318	. 052
45	13.076	4.073	. 003	8.145	. 013	12.218	. 030	16.291	. 053
2200	17.435	4.066	. 003	8.13I	. 013	12.197	. 030	16.262	. 053
15	4.359	4.058	. 003	8.117	.013	12.175	. 030	16.234	. 054
30	8.719	4.051	. 003	8.102	. 014	12.154	.030	16.205	. 054
45	13.078	4.044	. 003	8.088	. 014	12.132	.031	16.176	. 055
2300	17.437	4.036	. 003	8.073	. 014	12.109	. 031	16.146	. 055
15	4.360	4.029	. 003	8.058	. 014	12.087	.031	16.116	. 055
30	8.720	4.021	. 003	8.043	. 014	12.064	. 031	16.086	. 056
45	13.080	4.014	. 004	8.028	. 014	12.041	.032	16.055	. 056
2400	17.439	4.006	. 004	8.012	. 014	12.018	. 032	16.024	.057
15	4.360	3.998	. 004	7.997	. 014	1 l .995	. 032	15.993	. 057
30	8.721	3.990	. 004	7.981	. 014	11.971	. 032	15.962	. 058
45	13.081	3.982	. 004	7.965	.015	11.948	. 033	15.930	. 058
2500	17.442	3.974	. 004	7.949	. 015	11.923	. 033	15.898	.059
15	4.361	3.966	. 004	7.933	.015	11.899	. 033	${ }^{1} 5.865$. 059
30	8.722	3.958	. 004	7.916	.015	11.874	. 033	15.832	. 059
45	13.083	3.950	. 004	7.900	.015	11.850	. 034	15.800	.060
2600	17.444	3.942	. 004	7.883	. 015	11.825	. 034	15.767	. 060
15 30	4.362 8.723	3.933 3.925	. 004	7.866 7.849	. 015	11.800	. 034	15.733	. 061
30	8.723 13.085	3.925	. 004	7.849	. 015	11.774	. 034	15.699	.06r
45	${ }^{13} 3.085$	3.916	. 004	7.833	.015	11.749	. 035	15.665	.06I
2700	17.446	3.908	. 004	7.816	. 015	11.723	. 035	15.631	. 062
15	4.362	3.899	. 004	7.798	. 016	11.697	. 035	15.596	
30	8.724	3.890	. 004	7.780	. 016	11.671	. 035	15.561	.063
45	13.087	3.88 I	. 004	7.763	.016	11.644	. 036	15.526	.063
2800	17.449	3.873	. 004	7.745	. 016	11.618	. 036	15.490	. 064
15 30	4.363 8.726	3.863 3.854	. 004	7.727 7.709	. 016	11.591	. 036	15.454	
45	13.726 13.088	3.854 3.845	. 004	7.709 7.691	. .016	11.563 11.536	.036 .036	15.418 15.382	. 064
2900	17.451	3.836	. 004	7.673	. 016	11.509	. 036	15.345	. 065
15 30	4.363 8.727	3.827 3.817	. 004	7.654	. 016	11.48 I	. 037	${ }^{1} 5 \cdot 308$.065
45	8.727 13.091	3.817 3.808	.004 .004	7.635 7.616	. .1016	11.453 11.425	.037 .037	15.270 15.233	. 066
3000	17.454	3.799	. 004	$7 \cdot 598$.017	11.396	. 037	15.195	. 066

[^23][Derivation of table explained on pp. liii-lvi.]

능		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		${ }^{5} 5^{\prime}$ longitude.		30' longitude.		45^{\prime} longitude.		$\mathrm{I}^{\circ} \mathrm{l}$ longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$30^{\circ} 00^{\prime}$		3.799	. 004	7.598	. 017	II. 396	. 037	15.195	. 066
15	4.364	3.789	. 004	7.578	. 017	11.367	. 037	15.156	. 067
30	8.728	3.779	. 004	7.559	.017	$\underline{1} .338$. 038	15.118	. 067
45	13.092	3.770	. 004	7.540	.017	11.309	.038	15.079	. 067
3100	17.457	3.760	. 004	$7 \cdot 520$. 017	II. 280	. 038	15.040	. 068
15	4.365	3.750	. 004	7.500	.017	11.250	. 038	15.001	. 068
30	8.730	3.740	. 004	7.480	. 017	11.221	. 038	14.961	. 068
45	13.095	3.730	. 004	$7 \cdot 460$.017	11.191	. 038	14.92 I	. 068
3200	17.460	3.720	. 004	7.441	.017	11.161	. 039	14.881	. 069
15	$4 \cdot 366$	3.710	. 004	7.420	.017	11.130	. 039	14.840	. 069
30	8.73 I	3.700^{\prime}	. 004	7.400	.017	11.100	. 039	14.799	. 069
45	13.097	3.690	. 004	7.379	. 017	11.069	. 039	14.758	. 070
3300	17.462	3.679	. 004	7.359	. 017	11.038	. 039	14.718	. 070
15	4.366	3.669	. 004	7.338	. 018	11.007	. 039	14.676	. 070
30	8.733	3.658	. 004	$7 \cdot 317$. 018	10.975	. 040	14.633	. 070
45	13.099	3.648	. 004	7.296	. 018	10.943	. 040	14.591	. 071
3400	17.465	3.637	. 004	7.275	. 018	10.912	. 040	14.549	. 071
15	$4 \cdot 367$	3.626	. 004	7.253	. 018	10.879	. 040	14.506	. 071
$3{ }^{\circ}$	8.734	3.616	. 004	7.231	. 018	10.847	. 040	14.463	. 071
45	13.101	3.605	. 004	7.210	.c18	10.815	. 040	14.420	. 072
3500	17.468	3-594	. 004	7.188	. 018	10.782	. 040	14.376	. 072
15	4.368	3.583	. 004	7.166	.018	10.749	.041	14.332	. 072
30	8.735	3.572	. 004	7.144	. 018	10.716	.041	14.288	. 072
45	13.103	$3 \cdot 561$. 005	7.122	. 018	10.683	. 041	14.244	. 073
3600	17.471	3.550	. 005	7.100	.oı8	10.650	. 041	14.200	. 073
15	4.368	$3 \cdot 539$. 005	7.077	. 018	10.616	. 041	14.154	. 073
30	8.736	$3 \cdot 527$. 005	7.054	. 018	10.582	. 041	14.109	. 073
45	13.105	3.516	. 005	7.032	. 018	10.547	.04I	14.053	. 073
3700	17.473	$3 \cdot 504$. 005	7.009	. 018	10.513	. 041	14.018	. 074
	$4 \cdot 369$	3.493	. 005	6.986	. 018	10.479	. 041	13.972	. 074
$3{ }^{\circ}$	8.738	3.481	. 005	6.963	.or8	10.444	. 042	13.925	. 074
45	13.108	3.470	. 005	6.939	.aI8	10.409	. 042	13.879	. 074
3800	17.477	$3 \cdot 45^{8}$. 005	6.916	. 019	10.374	. 042	13.832	. 074
15	4.370	3.446	. 005	6.892	. 019	10.339	. 042	13.785	. 074
30	8.740	3.434	. 005	6.869	. 019	10.303	. 042	13.737	. 075
45	13.110	3.422	. 005	6.845	.019	10.267	. 042	13.690	. 075
3900	17.480	3.41I	. 005	6.821	. 019	10.232	. 042	13.642	. 075
15		3.398	. 005	6.797	. 019	10.195	. 042	13.594	. 075
30	8.74 I	$3 \cdot 386$. 005	6.773	.or9	10.159	. 042	13.545	. 075
45	13.112	3.374	. 005	6.748	.or9	10.123	. 042	13.497	. 075
4000	17.483	$3 \cdot 362$. 005	6.724	. 019	10.086	. 042	13.448	. 075

Smitisonian Tables.
[Derivation of table explained on p. Hiii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		${ }_{15}{ }^{\text {' }}$ longitude.		30 longitude.		45' longitude.		x° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$40^{\circ} 00^{\prime}$		3.362	. 005	6.724	. 019	10.086	. 042	13.448	. 075
15	4.371	$3 \cdot 350$. 005	6.699	. 019	10.049	. 042	13.399	. 075
30	8.743	3.337	. 005	6.675	. 019	10.012	. 043	13.349	. 076
45	13.114	3.325	. 005	6.650	. 019	9.975	. 043	13.300	. 076
4100	17.486	$3 \cdot 312$. 005	6.625	. 019	9.937	. 043	13.250	. 076
15	$4 \cdot 372$	$3 \cdot 300$. 005	6.600	. 019	9.900	. 043	13.200	. 076
30	8.744	3.287	. 005	6.575	. 019	9.862	. 043	13.149	. 076
45	13.117	3.275	. 005	6.549	. 019	9.824	. 043	13.098	. 076
4200	17.489	3.262	. 005	6.524	. 019	9.786	. 043	13.048	. 076
15	4.373 8.746	3.249	. 005	6.498	. 019	9.747	. 043	12.996	. 076
30	$\begin{array}{r}8.746 \\ \\ \hline 3\end{array}$	3.236	. 005	6.472	. 019	9.709	. 043	12.945	. 076
45	13.119	3.223	. 005	6.447	. 019	9.670	. 043	12.893	. 076
4300	17.492	3.210	. 005	6.421	. 019	9.631	. 043	12.842	. 076
15	4.374	3.197	. 005	6.394	. 019	9. 592	. 043	12.789	. 076
30	8.747	3.184	. 005	6.368	. 019	9.552	. 043	12.736	. 076
45	13.121	3.170	. 005	6.342	. 019	9.513	. 043	12.684	. 076
4400	17.495	3.158	. 005	6.316	. 019	9.473	. 043	12.631	. 077
15	. 4.375	3.144	. 005	6.289	. 019	9.433	. 043	12.578	. 077
30	8.749	3.131	.005	6.262	. 019	$9 \cdot 393$. 043	12.524	. 077
45	13.124	3.118	. 005	6.235	. 019	9.353	. 043	12.471	. 077
4500	17.498	3.104	. 005	6.209	. 019	9.313	. 043	12.417	. 077
15	4.375 8.757	3.091	. 005	6.181	. 019	9.272	. 043	12.363	. 077
30	8.751	3.077	. 005	6.154	. 019	9.231	. 043	12.308	. 077
45	13.126	3.063	. 005	6.127	. 019	9.190	. 043	12.254	. 077
4600	17.501	3.050	. 005	6.100	. 019	9.150	. 043	12.200	. 077
15	4.376 8.752	3.036	. 005	6.072	. 019	9. 108	. 043	12.144	. 077
30	$\begin{array}{r}8.752 \\ \hline\end{array}$	3.022	. 005	6.044	. 019	9.067	. 043	12.089	. 077
45	13.128	3.008	. 005	6.017	. 019	9.025	. 043	12.033	. 077
4700	17.504	2.994	. 005	5.989	. 019	8.983	. 043	11.978	. 076
15	4.377	2.980	. 005	5.961	.019	8.941	. 043	11.922	. 076
30	8.754	2.966	. 005	5.933	. 019	8.899	. 043	11.865	. 076
45	13.131	2.952	. 005	5.904	.019	8.857	. 043	11.809	. 076
4800	17.508	2.938	. 005	5.876	. 019	8.814	. 043	11.752	. 076
15		2.924	. 005	5.848	. 019	8.771	. 043		
30	8.755	2.909	. 005	5.819	. 019	8.728 8.686	. 043	11.638	. 076
45	13.133	2.895	. 005	5.790	.019	8.686	. 043	11.581	. 076
4900	17.511	2.88I	. 005	5.762	. 019	8.643	. 043	11.524	. 076
15		2.866	. 005		. 019		. 043		
30	$\begin{array}{r}8.757 \\ \hline\end{array}$	2.852 2.837	. 005	5.704	.019	8.555	. 043	11.407	. 076
45	13.135	2.837	. 005	5.675	. 019	8.512	. 042	11.349	. 076
5000	17.514	2.823	. 005	5.646	. 019	8.468	. 042	11.291	. 076

[Derivation of table explained on p. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR-							
		15' longitude.		30^{\prime} longitude.		45^{\prime} longitude.		$\mathrm{r}^{\circ} \mathrm{longitude}$.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$50^{\circ} 00^{\prime}$		2.823	. 005	5.646	. 019	8.468	. 042	1 I .291	. 076
15	$4 \cdot 379$	2.808	. 005	5.616	. 019	8.424	. 042	1 I .232	. 075
30	8.758	2.793	. 005	$5 \cdot 587$. 19	8.380	. 042	1 I .174	. 075
45	13.137	2.779	. 005	5.557	.019	8.336	. 042	11.114	. 075
5100	17.517	2.764	. 005	5.528	. 019	8.291	. 042	11.055	. 075
15	4.380	2.749	. 005	5.498	. 019	8.247	. 042	10.996	. 075
30	8.760	2.734	. 005	$5 \cdot 468$. 019	8.202	. 042	10.936	. 075
45	13.140	2.719	. 005	$5 \cdot 438$.019	8.157	. 042	10.876	. 075
5200	17.520	2.704	. 005	5.408	.019	8.112	. 042	10.816	. 074
15	4.38 I	2.689	. 005	$5 \cdot 378$. 019	8.067	. 042	10.756	. 074
30	8.761	2.674	. 005	$5 \cdot 347$. 019	8.021	. 041	10.695	. 074
45	13.142	2.659	. 005	$5 \cdot 317$. 018	7.976	. 041	10.634	. 074
5300	17.523	2.643	. 005	5.287	. 018	7.930	. 041	10.573	. 074
15	4.38 I	2.628	. 005	5.256	. 018	7.884	. 041	10.512	. 074
30	8.763	2.613	. 005	5.225	. 018	7.838	. 041	10.451	. 073
45	13.144	2.597	. 005	5.195	. 018	7.792	. 041	10.389	. 073
5400	17.526	2.582	. 005	5.164	. 018	7.745	. 041	10.327	. 073
15	4.382	2.566	. 005	5.133	. OI 8	7.699	. 041	10.266	. 073
30	$\begin{array}{r}8.764 \\ \hline\end{array}$	2.551	. 005	5.102	. 18	7.652	. 041	10.203	. 073
45	13.147	2.535	. 005	5.070	. 018	7.606	. 041	10.145	. 072
5500	17.529	2.520	. 005	5.039	. 018	7.559	. 041	10.078	. 072
15	4.383	2.504	. 004	5.008	. 018	7.512	. 040	10.016	. 072
30	$\begin{array}{r}8.766 \\ \\ \hline\end{array}$	2.488 2.472	. 0004	4.976	. O . 88	7.465 7.417	. 040	9.953 9.890	. 072
45.	13.149	2.472	. 004	4.945	. 018	7.417	. 040	9.890	. 071
5600	17.532	2.456	. 004	4.913	. 018	$7 \cdot 370$. 040	9.826	. 071
15	4.384	2.441	. 004	4.88 I	. 018	7.322	. 040	9.763	. 071
30	8.767	2.425	. 004	4.849	. 018	7.274	. 040	9.699	. 071
45	13.151	2.409	. 004	4.817	. 018	7.226	. 040	9.635	. 070
5700	17.535	2.393	. 004	4.785	. 018	7.178	. 039	9.571	. 070
15		2.377	. 004	4.753	.017	7.130	. 039	9.507	. 070
30	$\begin{array}{r}8.769 \\ \hline\end{array}$	2.361 2.344	. 004	4.721 4.680	. 017	7.082 7.033	. 039	9.442 9.378	.070 .069
145	13.153	2.344	. 004	4.689	. 017	7.033	. 039	9.378	. 069
5800	17.537	2.328	. 004	4.656	. 017	6.985	. 039	9.313	. 069
15	4.385	2.312	. 004	4.624	. 017	6.936	. 039	9.248	. 069
30	8.770	2.296	. 004	$4 \cdot 591$.017	6.887	. 33^{8}	9.183	. 068
45	13.155	2.279	. 004	4.559	. 017	6.838	. 038	9.117	. 068
5900	17.540	2.263	. 004	4.526	. 017	6.789	. 038	9.052	. 068
15		2.246	. 004		.017			8.986	
30	$\begin{array}{r}4.3872 \\ \hline\end{array}$	2.230	. 004	4.460 4.427	. 017	6.690 6.641	. 038	8.920 8.854	. 067
45	13.157	2.214	. 004	4.427	. 017	6.641	. 038	8.854	. 067
6000	17.543	2.197	. 004	4.394	. 017	6.591	. 037	8.788	. 067

Table 19.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\overline{2 \delta 0000 . ~}$
[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		${ }^{5} 5^{\prime}$ longitude.		30^{\prime} longitude.		45' longitude.		s^{0} longitude.	
		\mathbf{x}	y	x	y	x	y	x	y
	Iuches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Incines.	Inches.
$60^{\circ} 00^{\prime}$		2.197	. 004	4.394	. 017	6.591	. 037	8.788	. 067
15	$4 \cdot 386$	2.180	. 004	4.361	. 017	6.541	. 037	8.722	. 066
30	8.773	2.164	. 004	$4 \cdot 327$. 016	6.491	. 037	8.655	. 066
45	13.159	2.147	. 004	4.294	. 016	6.441	. 037	8.588	. 066
6 x 00	17.546	2.130	. 004	4.261	. 016	6.391	. 037	8.521	. 065
15	4.387	2.114	. 004	4.227	. 016	6.340	. 036	8.454	. 065
30	8.774	2.097	. 004	4.194	. 016	6.290	. 036	8.387	. 064
45	13.161	2.080	. 004	4.160	. 016	6.240	. 036	8.320	. 064
6200	17.548	2.063	. 004	4.126	. 016	6.189	. 036	8.252	. 064
15	4.388	2.046	. 004	4.092	. 016	6.138	. 036	8.184	. 063
30	8.776	2.029	. 004	4.058	. 016	6.088	. 035	8.117	.063
45	13.163	2.012	. 004	4.024	. 016	6.036	. 035	8.048	. 063
6300	17.551	1.995	. 004	3.990	. 015	5.985	. 035	7.980	. 062
15	4.388	1. 978	. 004	3.956	.OI 5	5.934	. 035	7.912	. 062
30	8.777	1.961	. 004	3.922	. 015	5.883	. 034	7.844	.061
45	13.165	1.944	. 004	3.887	. 015	5.83 I	. 034	7.775	. 061
6400	17.554	1. 926	. 004	3.853	. 015	5.780	. 034	7.706	. 060
15	4.389	1.909	. 004	3.819	. 015	5.728	. 034	7.637	. 060
30	8.778	1.892	. 004	3.784	. 015	5.676	. 034	7.568	. 060
45	13.167	1.875	. 004	3.749	. 015	5.624	. 033	7.499	. 059
6500	17.556	1.857	. 004	3.715	. 015	5.572	. 033	7.430	. 059
15		1.840	. 004	3.680	.015	$5 \cdot 520$. 033	7.360	. 059
30	8.779	1.823	. 004	3.645	. 014	$5 \cdot 468$. 033	7.290	. 058
45	13.169	I. 805	. 004	3.610	. 014	5.45	.032	7.220	. 058
6600	17.559	1.788	. 004	3.575	. 014	5.363	. 032	7.151	. 057
15	4.390	1.770	. 004	3.540	. 014	$5 \cdot 310$. 032	7.080	. 057
30	8.780	1.753	. 004	3.505	. 014	5.258	. 032	7.010	. 056
45	13.171	1.735	. 003	3.470	. 014	5.205	.031	6.940	. 056
6700	17.561	1.717	. 003	3.435	. 014	$5 \cdot 152$.03I	6.870	. 055
15	4.391 8.782	1.700 1.682	. 003	3.400 3.364	. 014	5.099	.031	6.799 6.728	. 055
30 45	8.782 13.172	1.682 1.664	.003 .003	3.364 3.329	. 01014	5.046 4.993	. 31	6.728 6.658	. 054
6800	17.563	1.647	. 003	3.293	. 013	4.940	. 030	6.586	. 053
15		1. 629	. 003	3.258	.013	4.886	. 030	6.515	
30	$\begin{array}{r}8.783 \\ \hline\end{array}$	1.6II	. 003	3.222	. 013	4.833	. 029	6.444	. 052
45	13.174	1.593	. 003	3.186	. 013	4.780	. 029	6.373	. 052
6900	17.565	1.575	. 003	3.151	. 013	4.726	. 029	6.301	. 051
15		1.557	.003	3.115	.013	4.672			
30	$\begin{array}{r}8.784 \\ \hline\end{array}$	1. 540	. 003	3.079	. 013	4.618	. 028	6.158	. 051
45	13.176	1.522	. 003	3.043	.012	$4 \cdot 564$. 028	6.086	. 050
7000	17.568	1.504	. 003	3.007	. 012	4.510	. 028	6.014	. 049

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{101}{250000 .}$
[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		15^{\prime} longitude.		30^{\prime} longitude.		45' longitude.		5° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$70^{\circ} 00^{\prime}$		1.504	. 003	3.007	. 012	4.510	. 028	6.014	. 049
15	4.392	1.486	. 003	2.971	. 012	4.456	. 028	5.942	. 049
30	8.785	1.467	. 003	2.935	. 01	4.402	. 027	5.870	. 048
45	13.177	I. 449	. 003	2.899	. 012	$4 \cdot 348$. 027	5.797	. 048
7100	17.570	1.431	. 003	2.862	. 012	4.294	. 027	5.725	. 047
15	4.393	1.413	. 003	2.826	. 012	4.239	. 026	5.652	. 047
30	8	1.395	. 003	2.790	. 011	4.185	. 026	5.580	. 046
45	13.179	1.377	. 003	2.753	. OI	4.130	. 026	$5 \cdot 507$. 046
7200	17.572	1. 35^{8}	. 003	2.717	. 011	4.075	. 025	$5 \cdot 434$. 045
15	4.393	1.340	. 003	2.681	. OI 1	4.021	. 025	$5 \cdot 36 \mathrm{I}$. 045
30	8.787	I. 322	.003	2.644	. OLI	3.966	. 025	5.288	. 044
45	13.180	1.304	. 003	2.607	. OI 1	3.911	. 024	5.215	. 044
7300	17.573	1.285	. 003	2.57 I	. 011	3.856	. 024	5.142	. 043
15	4.394	1.267	. 003	2.534	. OI 1	3.801	. 024	5.068	.043
30	8.788	1. 249	. 003	2.497	.oio	3.746	. 024	4.994	. 042
45	13.181	1.230	. 003	2.461	. 010	3.691	. 023	4.921	. 041
7400	17.575	1.212	. 003	2.424	. 010	3.636	. 023	4.848	. 041
15	4.394	1.193	. 003	2.387	. 010	$3 \cdot 580$. 023	4.774	. 040
30	8.788	1.175	. 002	2.350	. 010	3.525	. 022	4.700	. 040
45	13.183	I.I 56	. 002	2.313	. 010	3.470	. 022	4.626	. 039
7500	17.577	1.138	. 002	2.276	. 010	3.414	. 022	4.552	. 038
15	4.395	1.119	. 002	2.239	. 009	$3 \cdot 358$. 021	$4 \cdot 478$.038
30	8.789	1.101	. 002	2.202	. 009	$3 \cdot 303$. 021	4.404	. 037
45	13.184	1.082	. 002	2.165	. 009	3.247	. 021	4.329	. 037
7600	17.579	1.064	. 002	2.127	. 009	3.191	. 020	4.255	. 036
15	4.395	1.045	. 002	2.090	. 009	3.135	. 020	4.180	. 036
30	8.790	1.026	. 002	2.053	. 009	3.079	. 020	4.106	. 035
45	13.185	1.008	. 002	2.016	. 009	3.023	. 019	4.031	. 034
7700	17.580	0.989	. 002	1.978	. 008	2.967	. 019	3.956	. 034
15	4.395	0.970	. 002	- 1.941	. 008	2.911	. 019	3.882	. 033
30	8.79 T	0.952	. 002	1.903	. 008	2.855	. 018	3.807	. 033
45	13.186	0.933	. 002	1.866	. 008	2.799	. 018	3.732	. 032
7800	17.582	0.914	. 002	1.828	. 008	2.743	. 018	3.657	.031
15	$4 \cdot 396$	0.895	. 002	1.791	. 008	2.686	.017	3.582	.031
30	8.791	0.877	. 002	1.753	.008	2.630	.017	3.506	. 030
45	13.187	0.858	. 002	1.716	. 008	2.573	. 017	3.43 I	. 030
7900	17.583	0.839	. 002	ェ. 678	. 007	2.517	.016	3.356	. 029
15	4.396	0.820	. 002	1.640	. 007	2.461	. 016	3.28I	. 028
30	8.792	0.801	. 002	1.603	. 007	2.404	. 016	3.205	. 028
45	13.188	0.782	. 002	1.565	. 007	2.348	. 015	3.130	. 027
8000	17.584	0.764	. 002	1.527	. 007	2.29 I	. 015	3.054	. 026

[Derivation of table explained on pp. liii- Ivi.]

		AbSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED PARALLEL.		
		$5{ }^{\prime}$	10^{\prime}	15^{\prime}	20^{\prime}	25^{\prime}	$3{ }^{\prime}$			
	Inches.	Inches.	Inches.	Inches.	Inches.	Iuches.	Inches.			
$0^{\circ} 00^{\prime}$		2.922	5.844	8.765	11.687	14.609	17.531	盛気	0°	$1{ }^{0}$
10	5.804	2.922	5.843	8.765	11.687	14.608	17.530	운..․․		
20	11.608	2.922	5.843	8.765	11.686	14.608	17.530			
30	17.412	2.922	5.843	8.765	11.686	14.608	$17.53{ }^{\circ}$		Inches.	Inches.
40	23.216	2.922	5.843	8.764	11.686	14.608	17.529	5	0.000	0.000
50	29.020	2.921	5.843	8.764	11.686	14.607	17.528	15	0.000 .000	. 0000
100		2.921	5.843	8.764	11.685	14.606	17.528	15	. 000	. 000
10	5.840	2.921	5.842	8.763	11.684	14.606	17.527	20	. 000	. 001
20	11.608	2.921	5.842	8.763	11.684	14.604	17.525	25	. 000	. 001
30	17.412	2.921	5.841	8.762	11.683	14.604	17.524	30	,00	. 01
40	23.216	2.920	5.841	8.761	11.682	14.602	17.522			
50	29.020	2.920	5.840	8.761	11.681	14.601	17.521			
200		2.920	5.840	8.760	11.680	14.600	17.520		$2{ }^{\circ}$	3°
10	5.804	2.920	5.839	8.759	11.678	14.598	17.518			
20	11.608	2.919	5.839	8.758	11.677	14.596	17.516	5	0.000	0.000
30	17.412	2.919	5.838	8.757	11.676	14.594	17.513	10	. 000	. 000
40	23.216	2.918	5.837	8.756 8.755	11.674	14.592	17.511	15	. 001	. 001
50	29.020	2.918	5.836	8.755	11.673	14.591	17.509	20	. 001	. 002
300		2.918	5.836	8.753	11.671	14.589	17.507	25 30	. 002	. 003
10	5.804	2.917	5.835	8.752	11.669	14.586	17.504	30	. 003	
20	11.608	2.917	5.834	8.750	11.667	14.584	17.501			
30	17.413	2.916	5.832	8.749	11.665	14.581	17.497			
40	23.217	2.916	5.831	8.747	I 1.663	14.578	17.494		4°	5°
50	29.021	2.915	5.830	8.746	11.661	14.576	17.491			
400		2.915	5.829	8.744	II. 659	14.574	17.488	5	0.000	0.000
10	5.804	2.914	5.828	8.742	11.656	14.570	17.484	10	. 001	. 001
20	11.609	2.913	5.827	8.740	11.654	14.567	17.480	15	. 001	. 002
30	17.413	2.913	5.825	8.738	11.651	14.564	17.476	20	. 002	. 003
40	23.217	2.912	5.824	8.736	11.648	14.560	17.473	25	. 004	. 005
50	29.022	2.911	5.823	8.734	11.646	14.557	17.468	30	. 005	. 007
500		2.911	5.822	8.732	11.643	14.554	17.465			
10	5.804	2.910	5.820	$8.73{ }^{\circ}$	11.640	14.550	17.459		6°	${ }^{\circ}$
20	11.609 17.414	2.909 2.908	5.818 5.817	8.727 8.725	11.636	14.546	17.455		6	$7{ }^{\circ}$
40	23.218	2.908	5.815	8.722	$11.63{ }^{\circ}$	14.542 12.538	17.450 17.445			
50	29.022	2.907	5.813	8.720	11.627	14.534	17.445	10	0.000 .001	$\begin{array}{r} 0.000 \\ .001 \end{array}$
600		2.906	5.812	8.718	11.624	14.530	17.435	15	. 002	. 002
10	5.805	2.905	5.810	8.715	11.620	14.524	17.429	20	. 004	. 004
20	11.609	2.904	5.808	8.712	11.616	14.520	17.424	25	. 006	. 006
30	17.414	2.903	5.806	8.709	11.612	14.515	17.418	$3{ }^{\circ}$. 008	. 009
40	23.219 29.024	2.902	5.804	8.706	11.608	14.510	17.413			
50	29.024	2.901	5.802	8.703	11.604	14.506	17.407		80	
700		2.900	5.800	8.701	11.601	14.501	17.401		8	
10	5.805	2.899	5.798	8.697	11.596	14.496	17.395			
20	11.610 17.415	2.898 2.897	5.796	8.694	11.592	14.49°	$17 \cdot 387$	5	0.000	
30	17.415	2.897	5.794	8.690	11.587	14.484	17.381	10	. 001	
40	23.220 29.025	2.896	5.79 I	8.687	11.583	14.478	$17 \cdot 374$	15	. 003	
50	29.025	2.895	5.789	8.684	11.578	14.473	17.368	20	. 005	
800		2.894	5.787	8.680	11.574	14.468	17-361	25 30	. 0107	

©mithsonian Tables.
[Derivation of table explained on pp. liii-lvi.]

		AbSCISSAS OF DEVELOPED PARALLEL.						ordinates of DEVELOPED parallel.		
		5^{\prime}	10^{\prime}	$15^{\prime \prime}$	20^{\prime}	25^{\prime}	30^{\prime}			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
$8^{\circ} 00^{\prime}$		2.894	5.787	8.680	11.574	14.468	17.361	碞鮞		
10	5.805	2.892	5.784	8.677	11.569	14.46 r	17.353			
20	11.610	2.891	5.782	8.673	11.564	14.455	17.346			
30	17.416	2.890	5.779	8.669	11.559	14.448	17.338		Inches.	Inches
40	23.221	2.888	5.777	8.666	11.554	14.442	17.331	5	0.000	0.000
50	29.026	2.887	5.775	8.662	11.549	14.436	17.324	10	. 001	. 001
900		2.886	5.772	8.658	II. 544	14.430	17.3	15	. 003	. 003
10	5.806	2.885	5.769	8.654	11.539	14.424	17.308	20	. 005	. 0008
20	II.6II	2.883	5.767	8.650	1 I .533	14.416	17.300	30	. 010	. 008
30	17.417	2.882	5.764	8.646	Ir. 528	14.410	17.291			
40	23.222	2.88 r	5.761	8.642	11.522	14.402	17.283			
50	29.028	2.879	5.758	8.637	11.516	14.396	17.275			
1000		2.878	5.755	8.633	II.511	14.388	17.266		10°	II°
10	5.806	2.876	5.752	8.628	11.504	14.380	17.257			
20	11.612	2.875	5.749	8.624	11.498	14.373	17.248	5	0.000	0.000
30	17.417	2.873	5.746	8.619	11.492	14.366	17.239	10	. 001	. 002
40	23.223	2.872	5.743	8.614	11.486	14.358	17.229	15	. 003	. 004
50	29.029	2.870	5.740	8.610	11.480	14.350	17.220	20	. 006	. 006
1100		2.869	5.737	8.606		14.342	17.211	25	.009	. 010
10	5.806	2.867	5.734	8.60I	11.468	14.334	17.201	30	. 13	. 014
20	11.612	2.865	5.730	8.596	II 461	14.326	17.191			
30	17.419	2.864	5.727	8.590	11.454	14.318	17.181			
40	23.225	2.862	5.724	8.585	11.447	14.309	17.171		12°	13°
50	29.031	2.860	$5 \cdot 720$	8.580	11.440	14.300	17.161			
1200		2.858	5.717	8.575	11.434	14.292	17.150	5	0.000	0.000
10	5.807	2.857	5.713	8.570	11.426	14.282	17.139	10	. 002	. 002
20	11.613	2.855	5.709	8.564	11.419	14.274	17.128	15	. 004	. 004
30	17.420	2.853	5.706	8.559	11.412	14.264	17.117	20	. 007	. 007
40	23.226	2.851	5.702	8.553	1 I .404	14.256	17.107	25	. 011	. 012
50	29.033	2.849	5.698	8.548	11.397	14.246	17.095	30	. 016	.017
1300		2.847	5.695	8.542	11.390	14.237	17.084			
10	5.807 1.654	2.846 2.844	5.691 5.687	8.536 8.530	11.382 11.374	14.228 14.218	17.073		14°	15°
20	11.614 17.421	2.844 2.842	5.687 5.683	8.530	11.374 11.366	14.218	17.001 17.049			
40	17.4228	2.840	5.679	8.519	11.358	14.198	17.038			
50	29.035	2.838	5.675	8.513	11.350	14.188	17.026	15	0.000 .002	$\begin{array}{r} 0.001 \\ .002 \end{array}$
1400		2.836	5.671	8.507	11.342	14.178	17.014	15 20	.004 .008	$\begin{aligned} & .005 \\ & .009 \end{aligned}$
10	5.808	2.834	5.667	8.500	11.334	14.168	17.001 16.988	25	. 012	. 013
20	11.615	2.831	5.663	8.494	11.326	14.157	16.988	30	. 018	. 019
30	17.422	2.829	5.658	8.488	11.317	14.146	16.975			
40	23.230	2.827	5.654	8.48 I	11.308	14.136	16.963			
50	29.038	2.825	5.650	8.475	11.300	14.125	16.950		16°	
1500		2.823	5.646	8.469	11. 292	14.114	16.937			
10	5.808	2.821	5.641	8.462	1 I .282	14.103	16.924			
20	11.616	2.818	5.637	8.455	11.274	14.092	16.910		0.001	
30 40	17.424 23.232	2.816 2.814	5.632 5.628	8.448 8.44 I	11.264 11.255	14.080 14.069	16.897 16.883	10	. 002	
40 50	23.232 29.040	2.814 2.812	5.628 5.623	8.44 I 8.435	11.255 11.246	14.069 14.058	16.883 16.870	15 20	.005 .009	
50	29.040	2.812	5.623	8.435	11.246	14.0		25	. 014	
1600		2.809	5.619	8.428	11.237	14.046	16.856	30	. 020	

Table 20.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $12 \frac{1}{260 \sigma} \cdot$
[Derivation of table explained oa pp. liii-lvi.]

[Derivation of table explained on pp. liii-lvi.]

[Derivation of table explained on pp. liii-lvi.]

		ABSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED PARALLEL.		
			10^{\prime}		20^{\prime}	25	30^{\prime}			
$32^{\circ} 00^{\prime}$	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.12.401	Inches.		32°	33°
		2.480	4.960	7.441	9.921		$\begin{aligned} & 14.881 \\ & 14.854 \end{aligned}$			
	5.821	2.476	4.951	7.427	9.903	12.379				
20	I1.642	2.471	4.942	7.413	9.884	12.355	14.827		Inches.0.001	Inches. 0.001
30	17.462	2.467	4.933	$7 \cdot 400$	9.866	12.333	14.800			
40	23.283	2.462	4.924	$7 \cdot 386$	9.848	12.310	14.772			
50	29.104	2.458	4.915	7.373	9.830	12.288	14.745	10	. 004	. 0.004
3300		2.453	4.806	7.359	9.812	12.265	14.717	15 20	.009 .015	. 0099
10	5.822	2.448	4.896	7.345	9.793	12.241	14.689	20 25	. .024	. .024
20	11.643	2.444	4.887	7.33 I	9.774	12.218	14.661	30	. 034	. 035
30	17.465	2.439	4.878	$7 \cdot 316$	9.755	12.194	14.633			
40	23.287	2.434	4.868	7.302	9.736	12.171	14.605			
50	29.109	2.429	4.859	7.288	9.718	12.147	14.576			
3400		2.425	4.850	7.274	9.699	12.124	14.549		34°	35°
10	5.823	2.420	4.840	7.260	9.680	12.100	14.520			
20	11.645	2.415	4.830	7.246	9.661	12.076	14.491	5	0.001	0.001
30 40	17.468	2.410	4.82 I	7.231	9.642	12.052	14.462	10	. 004	. 004
40	23.291	2.406	4.81 II	7.217	9.622	12.028	14.434	15	. 009	. 009
50	29.113	2.401	4.802	7.203	9.604	12.004	14.405	20	. 016	. 016
3500		2.396	4.792	7.188	9.584	11.980	14.376	25 30	.025	. 025
10	5.824	2.391	4.782	7.174	9.565	11.956	14.347			
20	11.647	2.386	4.773	7.159	9.545	11.932	14.318			
30	17.471	2.381	4.763	7.144	9.526	11.907	14.288			
40	23.294	2.377	4.753	7.130	9.506	11.883	14.259		36°	37°
50	29.118	2.372	4.743	7.115	9.486	11.858	14.230			
3600	\cdots	2.367	4.733	7.099	9.466	11.833	14.200	5	0.001	0.001
	5.824	2.362	4.723	7.085	9.446	11.808	14.170	10	. 004	. 004
20	11.649	2.357	4.713	7.070	9.426	11.783	14.139	15	. 009	. 009
30	17.473	2.351	4.703	7.055	9.406	11.757	14.109	20	. 016	. 016
40	23.297	2.346	4.693	7.039	9.386	11.732	14.078	25	. 025	. 026
50	29.122	2.34 I	4.683	7.024	9.366	11.707	14.048	30	. 036	. 037
3700		2.336	4.673	7.009	9.345	II. 682	14.018			
10	5.826	2.331	4.662	6.994	9.325	11.656	13.987			
20	11.651	2.326	4.652	6.978	9.304	11.630	13.956		3^{8}	39°
30	17.477	2.321	4.642	6.963	9.284	11.605	13.925			
40	23.302	2.316	4.631	6.947	9.263	11.579	13.894		0.001	0.001
50	29.128	2.311	4.621	6.932	9.242	11.553	13.864	10	. 004	. 004
$3^{80} 0$		2.305	4.6II	6.916	9.222	11.527	13.832	15	. 009	. 009
10 20 	5.827 11.653	2.300 2.295	4.600	6.900 6.884	9.200	11.501	13.801	20	. 017	. 017
20 30	11.653 17.480	2.295 2.290	4.590 4.579	6.884 6.869	9.179	11.474	13.769	30	. 037	. 037
30 40	17.400 23.306	2.290 2.284	4.579 4.568	6.869 6.853	9.158	11.448	13.737			
50	29.133	2.279	4.568 4.55	6.853 6.837	9.137 9.116	11.421	13.705 13.673			
									40°	
3900 10	5.828	2.274	4.548 4.537	6.821	9.095	11.369	13.642			
20	11.635	2.263	4.526	6.789	9.052	11.315	13.15	5	0.001	
30	17.483	2.258	4.515	6.773	9.030	11.288	13.545	10	. 004	
40	23.310	2.252	4.504	6.756	9.008	11.261	13.513	15	. 009	
50	29.138	2.247	4.493	6.740	8.987	11.234	13.480	20	.017	
4000		2.241	4.483	6.724	8.965	11.207	13.448	25 30	. 0288	

[Derivation of table explained on pp. liii-lvi.]

		AbSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED PARALLEL.		
		5^{\prime}	10^{\prime}	15^{\prime}	20^{\prime}	25	$30^{\prime \prime}$			
$40^{\circ} 00^{\prime}$	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
		2.24 I	4.483	6.724	8.965	11.207	13.448	葹号	40°	41°
10	5.829	2.236	4.472	6.707	8.943	11.179	13.415	운		
20	11.657	2.230	4.46 I	6.69 I	8.921	II.I52	13.382			
30	17.486	2.225	4.450	6.674	8.899	11.124	13.349		Inches.	Inches.
40	23.314	2.219	4.439	6.658	8.877	11.097	13.316	5^{\prime}	0.001	0.001
50	'29.143	2.214	4.428	6.641	8.855	11.069	13.283	10	0.001 .004	0.001 .004
410010		2.208	4.417	6.625	8.834	11.042	13.250	15	. 009	. 009
	5.830	2.203	4.406	6.608	8.81 I	11.014	13.250 13.217	20	. 017	. 017
20	11.659	2.197	4.394	6.591	8.788	10.985	13.183	25 30	. .026	
30	17.489	2.192	4.383	6.575	8.766	10.958	13.149			
40	23.319	2.186	4.372	6.558	8.744	10.929	13.115			
50	29.149	2.180	4.360	6.54 I	8.721	10.901	13.081			
420010		2.175	4.349	6.524	8.698	10.873	13.048		42°	43°
	5.83 I	2.169	4.338	6.507	8.676	10.844	13.013			
20	11.661	2.163	$4 \cdot 326$	6.490	8.653	10.816	12.979	5	0.001	0.001
30	17.492	2.157	4.315	6.472	8.630	10.787	12.945	10	. 004	. 004
40	23.323	2.152	4.303	6.455	8.607	10.759	12.910	15	. 010	. 010
50	29.154	2.146	4.292	6.438	8.584	10.730	12.876	20	. 017	. 017
4300		2.140	4.281	6.421	8.561	10.702	12.842	25 30	.026 .038	.027 .038
10	5.832	2.135	4.269	6.403	8.538	10.672	12.807	30	. 3^{8}	
20	I1. 663	2.129	4.257	6.386	8.514	10.643	12.772			
30	17.495	2.123	4.246	6.368	8.491	10.614	12.737			
40	23.327	2.117	4.234	6.351	8.468	10.585	12.701		44°	45°
50	29.159	2.111	4.222	6.333	8.444	IO. 556	12.667			
4400		2.105	4.210	6.316	8.42 I	10.526	12.631	5	0.001	0.001
	5.833	2.099	4.199	6.298	8.397	10.496	12.596	10	. 004	. 004
20	1 I .666	2.093	4.187	6.280	8.373	I0.467	12.560	15	. 010	. 010
30	17.498	2.087	$4 \cdot 175$	6.262	8.350	10.437	12.524	20	. 017	. 017
40	23.331	2.081	4.163	6.244	8.326	10.407	12.489	25	. 027	. 027
50	29.164	2.076	4.151	6.227	8.302	10.378	12.453	30	. 038	. 038
450	\cdots	2.070	4.139	6.209	8.278	10.348	12.417			
10	5.834	2.064	4.127	6.191	8.254	10.317	12.38 I			
20	11.668	2.057	4.115	6.172	8.230	10.288	12.345		46°	47°
30	17.501	2.051	4.103	6.154	8.206	10.257	12.308			
40	23.335 29.169	2.045 2.039	4.091 4.079	6.136 6.118	8.181 8.157	10.226	12.272	5	0.001	0.001
50	29.169	2.039	4.079	6.118	8.157	10.197	12.236	10	. 004	. 004
4600		2.033	4.067	6.100	8.133	10.166	12.199	15 20	. .1010	. 010
10	5.835	2.027	4.054	6.08 I	8.108	10.136	12.163	20	. 017	. 017
20	11.670 17.504	2.021	4.042 4.030	6.063	8.084	10.104	12.125	30	. 038	. 038
30	17.504 23.339	2.015	4.030 4.017	6.044	8.059 8.034	10.074 10.043	12.089			
50	23.339 29.174	2.003	4.005	6.008	8.010	10.013	12.015			
4700		I. 996	3.992	5.989	7.985	9.98I	11.978		4°	
10	5.836	I. 990	3.980	5.970	7.960	9.951	11.94 I			
20	11.672	I. 984	3.968	5.951	7.935	9.919	11.903	5	0.001	
30	17.508	1. 978	3.955	5.933	7.910 7885	9.888	11.866	10	. 004	
40	23.344 29.180	1.971 I. 965	3.943	5.914	7.885	9.857	11.828	15	. 010	
50	29.180	1.965	3.930	5.895	7.860	9.826	I 1.791	20 25	. 017	
4800		1.959	3.917	5.876	7.835	9.794	II 1.752	30	. 038	

Table 20.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE रहुणन.
[Derivation of table explained on pp. liii-lvi.]

[Derivation of table explained on pp. liii-lvi.]

		ABSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED PARALLEL.		
		5	10^{\prime}	15^{\prime}	20^{\prime}	25^{\prime}	30^{\prime}			
$56^{\circ} 00^{\prime}$10	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
		I. 638	3.275	4.913	6.551	8.188	9.826	熍	56°	57°
	5.845	1.63I	3.265	4.892	6.522	8.153	9.784	-1.		
20	11.690	1.624	3.247	4.870	6.494	8.118	9.74 I			
30	17.535	1.6i6	3.233	4.849	6.466	8.082	9.698		Inches.	Inches.
40	23.380	1.609	3.219	4.828	6.437	8.046	9.656	5	0.001	0.001
50	29.224	1.602	3.204	4.807	6.409	8.011	9.613	10	. 004	. 004
570010		1. 595	3.190	4.785	6.380	7.976	9.571	15	. 009	. 009
	5.846	1.588	3.176	4.764	6.352	7.940	9.527	20	. 016	. 016
20	11.692	1.581	3.162	4.742	6.323	7.904	9.485	25 30	. 036	. 024
30	17.537	1. 574	3.147	4.721	6.294	7.868	9.442			
40	23.383	L. 566	3.133	4.699	6.266	7.832	9.398			
50	29.229	1.559	3.119	4.678	6.237	7.796	9.356			
5800		1.552	3.104	4.656	6.208	7.760	9.313		5°	59°
10	5.847	1. 545	3.090	4.634	6.179	7.724	9.269			
20	11.694	1.538	3.075	4.613	6.150	7.688	9.226	5	0.001	0.001
30	17.540	I. $53{ }^{\circ}$	3.061	$4 \cdot 59 \mathrm{I}$	6.122	7.652	9.182	Io	. 004	. 004
40	23.387	I. 523	3.046	4.569	6.092	7.616	9.139	15	. 009	. 008
50	29.234	1.516	3.032	4.547	6.063	7.579	9.095	20	. 015	. 015
590010		I. 509	3.017	4.526	6.034	7.543	9.052	25	.024 .034	. 024
	5.848	I. 501	3.003	4.504	6.005	7.506	9.008	30	. 034	. 034
20	11.695	I. 494	2.988	4.482	5.976	7.470	8.963			
30	17.543	1. 487	2.973	4.460	5.946	7.433	8.920			
40	23.391	1.479	2.959	4.438	5-917	7.396	8.876		60°	$6 \mathrm{I}^{\circ}$
50	29.238	1.472	2.944	4.416	5.888	$7 \cdot 360$	8.831			
6000		1. 465	2.929	4.394	5.858	$7 \cdot 323$	8.788	5	0.001	0.001
10	5.849	I. 457	2.914	$4 \cdot 372$	5.829	7.286	8.743	Io	. 004	. 004
20	$\underline{11.697}$	1.450	2.900	$4 \cdot 349$	5.799	7.249	8.699	15	. 008	. 008
30	17.546	I. 442	2.885	4.327	5.770	7.212	8.654	20	. 015	. 014
40	23.394	1.435	2.870	4.305	5.740	7.175	8.610	25	. 023	. 023
50	29.243	1.428	2.855	4.283	5.710	7.138	8.566	30	. 033	. 033
6ı 00		1.420	2.840	4.261	5.681	7.101	8.521			
10	5.850	I. 413	2.825	4.238	5.651	7.064	8.476			
20	11.699	1.405	2.810	4.216	5.621	7.026	8.43 I		62°	63°
30	17.549	1. 398	2.795	4.193	$5 \cdot 591$	6.988	8.386			
40 50	23.398 29.248	1.390 1. 383	2.781 2.766	4.171 4.148	5.561	6.952 6.914	8.342 8.297	5	0.001	0.001
50	29.248	1.383	2.766	4.148	$5 \cdot 53 \mathrm{I}$	6.914	8.297	10	. 004	. 003
6200		1. 375	2.751	4.126	$5 \cdot 501$	6.877	8.252	15 20	. 008	. 008
10	5.850	土. 368	2.736	4.103	5.471	6.839	8.207	25	. 0142	. 014
20	11.701	I. 360	2.720	4.081	5.441	6.801	8.16I	30		.031
30	17.551	I. 353	2.705	4.058	5.410	6.763	8.116	3	. 32	. 3
50	23.402	1. 345	2.690	4.035	$5 \cdot 380$	6.726 6.688	8.071 8.026			
	29.252	r. 338	2.675	4.013	$5 \cdot 350$	6.688	8.026		64°	
6300		1. 330	2.660	3.990	5.320	6.650	7.980			
10	5.851	I. 322	2.645	3.967	5.290	6.6 I 2	7.934			
20	1 I .702	I.315	2.630	3.944	5.259	6.574	7.889	5	0.001	
30	17.554	1. 307	2.614	3.921	5.228	6.536	7.843	10	. 003	
40	23.405	I. 300	2. 599	3.899	5.198	6.498	7.797	15	. 008	
50	29.256	1. 292	2.584	3.876	5.168	6.460	7.751	20 25	. 013	
6400		1. 284	2.569	3.853	5.1 37	6.422	7.706	30	. 030	

Smithsonian Tables.

Table 20.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 12$\}^{h} \delta 0_{0}$
[Derivation of table explained on pp. liii-jvi.]

[Derivation of table explained on pp. liii-lvi.]

		ABSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED PARALLEL.		
		5^{\prime}	$10^{\prime \prime}$	15	20^{\prime}	25^{\prime}	$30^{\prime \prime}$			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
$72^{\circ} 00^{\prime}$. 906	1.8rx	2.717	3.623	4.529	$5 \cdot 434$		72°	73°
10	5.858	. 898	1.795	2.693	3.590	4.488	5.386	우․․․		
20	11.716	. 889	1.779	2.668	3.558	4.447	5.336			
30	17.573	.881	1.763	2.644	3.525	4.407	5.288		Inches.	Inches.
40	23.43 I	.873	1.746	2.620	3.493	4.366	5.239	$5{ }^{\prime}$	0.001	0.001
50	29.289	. 865	$1.73{ }^{\circ}$	2.595	3.460	$4 \cdot 325$	5.190	10	. 003	. 002
7300		. 857	1.714	2.571	3.428	4.285	5.141	15	. 006	. 005
10	5.858	. 849	1. 697	2.546	3.428 3.395	4.244	5.092	20	. 010	. 010
20	11.717	.841	1. 68 r	2.522	3.362	4.203	5.044	35	. 016	. 021
30	17.575	. 832	1. 665	2.497	3.330	4.162	4.994			
40	23.434	. 824	1.648	2.473	3.297	4.121	4.945			
50	29.292	. 816	r. 632	2.448	3.264	4.081	4.897			
7400		. 808	I. 616	2.424	3.232	4.040	4.847			
10	5.859	. 800	I. 599	2.399	3.199	3.999	4.798			
20	11.718	.791	1.583	2.374	3.160	3.957	4.748		74°	75°
30	17.577	.783	1.566	2.350	3.133	3.916	4.699			
40	23.436	. 775	1.550	2.325	3.100	3.875	4.650			
50	29.295	. 767	I. 534	2.300	3.067	3.834	4.601	10	0.001	0.001 .002
7500		. 759	I. 517	2.276	3.034	3.793	4.552	15	. 005	. 005
10	5.860	.750	1. 501	2.251	3.002	3.752	4.502	20	. 009	. 009
20	1 I .719	. 742	1. 484	2.226	2.968	3-7 11	4.453	25	. 014	. 013
30	17.578	. 734	I. 468	2.201	2.935	3.669	4.403	30	. 020	. 019
40	23.438	.726	I.451	2.177	2.902	3.628	4.354			
50	29.298	.717	I. 435	2.152	2.870	$3 \cdot 587$	4.304			
7600		. 709	1.418	2.127	2.836	3.546	4.255			
10	5.860	.701	1.402	2.102	2.803	3.504	4.205			
20	1 I .720	. 692	I. 385	2.078	2.770	3.463	4.155		76°	77°
30	17.580 23.440	. 684	I. 368	2.053	2.737	3.421	4.105			
40	23.440 29.300	. 676	I. 352 I. 335	2.028 2.003	2.704 2.671	3.380 3.339	4.056 4.006			
50	29.300	. 668	1.335	2.003	2.671	$3 \cdot 339$	4.006	10	0.001	0.000 .002
7700		. 659	1.319	1.978	2.638	3.297	3.956	15	. 005	. 004
10	5.860	. 651	1.302	1.953	2.604	3.256	3.907	20	. 008	. 007
20	11.721	. 643	1.285	1.928	2.571	3.214	3.856	25	. 013	. 012
30 40	17.582 23.442	. 634	1. 269	1.903	2.538	3.172	3.806	30	. 018	. 017
40	23.442	. 626	1.252	1.878	2.504	3.131	3.757			
50	29.302	. 618	1.235	1.853	2.471	3.089	3.706			
7800		.609	1.219	1. 828	2.438	3.047	3.656			
10	5.861	. 601	1.202	1.803	2.404	3.005	3.606			
20	11.722	- 593	1.185	1.778	2.371	2.964	3.556		78°	79°
30	17.583	-584	1.169	1.753	2.338	2.922 2.880	3.506 3.456			
40	23.444	. 576	I.I 52	1.728	2.304 2.270	2.880 2.838	3.456 3.406			
50	29.304	-568	1.I35	1.703	2.270	2.838	$3 \cdot 406$	5	0.000	0.000
7900		-559	I.119	1. 678	2.237	2.797	3.356	10	. 0002	. 0002
10	5.861	-55I	1.102	1. 653	2.204	2.755	$3 \cdot 305$	20	. 007	. 006
20	11.723	-542	1.085	1. 628	2.170	2.713	3.255 3.205	25	. 0111	.010
30 40	17.584 23.445	. 534	1.068	1.602 I. 577	2.136 2.103	2.671 2.629	3.205 3.155	30	. 016	.014
50	29.306	. 517	1. 035	1. 552	2.070	2.587	3.104			
8000		$\cdot 509$	1.018	I.527	2.036	2.545	3.054			

Table 21.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $12{ }^{1} 720$.
[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		15' longitude.		3^{0} dongitude.		$4 s^{\prime}$ longitude.		I° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$0^{\circ} 00^{\prime}$		8.647	. 000	17.293	. 000	25.940	. 000	34.586	. 000
15	8.588	8.646	. 000	17.293	. 001	25.939	. 001	34.585	. 001
30	17.176	8.646	. 000	17.292	. 001	25.938	. 001	34.584	. 003
45	25.764	8.646	. 000	17.291	. 001	25.937	. 002	34.582	. 004
100	$34 \cdot 35{ }^{2}$	8.645	. 000	17.291	. 001	25.936	. 003	34.581	. 005
15	8.588	8.644	. 000	17.289	. 002	25.933	. 003	34.577	. 007
30	17.176	8.643	. 000	17.287	. 002	25.930	. 004	34.573	. 008
45	25.764	8.642	.001	17.285	. 002	25.927	. 005	34.569	. 009
200	34:352	8.64 x	. 001	17.283	. 003	25.924	. 006	34.565	. 011
15	8.588	8.640	. 001	17.279	. 003	25.919	. 007	34.559	. 012
30	17.176	8.638	. 001	17.276	. 003	25.914	. 007	34.552	. 014
45	25.765	8.636	.001	17.273	. 004	25.909	. 008	34.546	. 015
300	34.353	8.635	. 001	17.270	. 004	25.904	. 009	34.539	. 016
15	8.588	8.633	. 001	17.265	. 004	25.898	. 009	34.530	. 018
30	17.177	8.630	. 001	17.260	. 005	25.898	. 010	34.52 I	. 019
45	25.765	8.628	. 001	17.256	. 005	25.884	. 011	$34 \cdot 512$. 020
400	34.353	8.626	. 001	17.251	. 005	25.877	. 012	34.502	. 021
15	8.589	8.623	. 001	17.245	. 006	25.868	. 012	34.491	. 023
30	17.177	8.620	. 001	17.240	. 006	25.859	. 013	34.479	. 024
45	25.766	8.617	. 002	17.234	. 006	25.850	. 014	$34 \cdot 467$. 025
500	34.354	8.614	. 002	17.228	. 007	25.842	. 015	34.456	. 026
15	8.589	8.610	. 002	17.221	. 007	25.83 r	. 016	34.441	
30	17.177	8.607	. 002	17.213	. 007	25.820	. 016	34.427	. 029
45	25.766	8.603	. 002	17.206	. 008	25.809	. 017	34.412	. 030
600	34.355	8.600	. 002	17.199	. 008	25.799	. 018	34.398	.03I
15		8.595	. 002	17.191	. 008	25.786	. 019	34.381	. 033
30	17.178	8. 59 I	. 002	17.182	. 008	25.773	. 020	34.364	. 034
45	25.767	8.587	. 002	17.174	. 009	25.760	. 021	34.347	. 035
700	34.356	8.583	. 002	17.165	. 009	25.748	.02I	34.330	. 037
15	8.589	8. 578	. 002	17.155	. 009	25.733	. 022	34.310	.038
30	17.179	8.573	. 003	17.145	. 009	25.718	. 022	34.291	. 040
45	25.768	8. 568	. 003	17.136	. 0	25.704	. 023	34.272	.04I
800	34.358	8.563	. 003	17.126	. 010	25.689	. 023	34.252	. 042
15	8.590	8. 558	. 003	17.115	. 010	25.673	. 024		
30	17.180	8. 552	. 003	17.104	. OII	25.656	. 024	34.208	. 045
45	25.769	8.546	. 003	17.093	.OII	25.639	. 025	34.186	. 046
900	34.359	8.541	. 003	17.082	. 012	25.622	. 026	34.163	. 047
15			. 003	17.069	.012	25.604	. 027	34.138	. 048
$\begin{aligned} & 30 \\ & 45 \end{aligned}$	17.180 25.771	8.528 8.522	. 003	17.057 17.045	. 012	25.585	. 027	34.114	. 040
45	25.771	8.522	. 003	17.045	.013	25.567	. 028	34.089	. 051
1000	34.36r	8.516	. 003	17.032	. 013	25.548	:029	34.064	. 052

[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		15' longitude.		30' longitude.		45^{\prime} longitude.		I° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Tuches.	Inches.	Inches,	Inches.
$10^{\circ} 00^{\prime \prime}$		8.516	. 003	17.032	.or3	25.548	. 029	34.064	. 052
15	8.591	8.509	. 003	17.019	. 013	25.528	. 030	34.037	. 054
30	17.181	8.502	. 003	17.005	. 013	25.507	. 031	34.010	. 055
45	25.772	8.496	. 003	16.991	. 014	25.487	. 032	33.982	. 056
1100	34.363	8.489	. 004	16.977	. 014	25.466	. 032	33.955	. 057
15	8.59 r	8.48 x	. 004	16.962	.014	25.444	. 033	33.925	. 058
30	17.183	8.474	. 004	16.947	. 015	25.421	. 033	33.895	. 059
45	25.774	8.466	. 004	16.933	. 015	$25 \cdot 399$. 034	33.865	.060
1200	34.365	8.459	. 004	16.918	. 015	$25 \cdot 376$. 035	33.835	.061
15	8.592	8.451	. 004	16.901	. 016	25.352	. 035	33.803	.063
30	17.184	8.443	. 004	I6.885	. 016	$25 \cdot 328$. 036	33.770	. 064
45	25.776	8.434	. 004	16.869	. 016	25.304	.036	33.738	. 065
1300	34.368	8.426	. 004	16.853	.017	25.279	. 037	33.706	. 066
15	8.592	8.418	. 004	16.835	. 017	25.253	.038	33.67 r	. 067
30	17.185	8.409	. 004	16.818	. 017	25.227	. 039	33.636	. 069
45	25.778	8.400	. 004	16.800	. or 8	25.201	. 040	33.601	. 070
1400	34.370	8.39 r	. 004	16.783	. 018	25.174	. 040	33.566	. 071
15	8.593	8.382	. 005	16.764	. 018	25.146	. 041	33.528	. 072
30	17.186	8.373	. 005	16.745	. 018	25.118	. 041	33.490	. 073
45	25.780	8.363	. 005	16.726	. 019	25.090	. 042	33.453	. 074
1500	34-373	8.354	. 005	16.708	.or9	25.061	. 042	33.415	. 075
15	8.594	8.344	. 005	16.688	. 019	25.031	. 043	33.375	. 077
30	17.188	8.334	. 005	16.668	. 019	25.001	. 044	$33 \cdot 335$. 078
45	25.782	8.324	. 005	r6.647	. 020	24.971	. 045	33.295	. 079
1600	34.376	8.314	. 005	16.627	. 020	24.941	. 045	33.255	.080
15	8.595	8.303	. 005	16.606	. 020	24.909	. 045	33.212	.08r
30	17.190	8.292	. 005	16.585	. 020	24.877	. 046	33.170	. 082
45	25.784	8.282	. 005	16.564	. 021	24.845	. 046	33.127	. 083
1700	34.379	8.27 r	. 005	16.542	. 021	24.813	. 047	33.084	. 084
15	8.596	8.260	. 005	16.520	. 021	24.779	. 048	33.039	. 085
30	17.191 25.787	8.249 8.237	. 005	16.497	. 021	24.746	. 049	32.994	. 087
45	25.787	8.237	. 006	16.475	. 022	24.712	. 050	32.949	. 088
1800	34.382	8.226	. 006	16.452	. 022	24.678	. 050	32.904	. 089
15	8.596	8.214	. 006	16.428	. 022	24.642	. 051	32.856	. 090
30	17.193	8.202	. 006	16.404	. 023	24.607	. 051	32.809	. 091
45	25.790	8.190	. 006	16.38 r	. 023	24.57 I	. 052	32.761	. 092
1900	34.386	8.178	. 006	16.357	. 023	24.535	. 052	32.714	. 093
15	8.597	8.166	. 006	16.332	. 023	24.498	. 053	32.664	. 094
30	17.195	8.153	. 006	16.3307	. 024	24.460	. 054	32.614	. 095
45	25.792	8.14 4	. 006	16.282	. 024	24.422	. 055	32.563	. 096
2000	34.390 ${ }^{-}$	8.128	. 006	16.257	. 024	24.385	. 055	32.513	. 097

Table 21.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{128 \sigma^{*} 0^{\circ}}{}$
[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		15^{\prime} lougitude.		$3{ }^{\prime}$ longitude.		45^{\prime} longitude.		r° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$20^{\circ} 00^{\prime}$		8.128	. 006	16.257	. 024	24.385	. 055	32.513	. 097
15	8.598	8.115	. 006	16.230	. 024	24.346	. 056	32.461	. 098
30	17.197	8.102	. 006	16.204	. 025	24.306	.056	32.408	. 099
45	25.795	8.089	. 006	16.178	. 025	24.267	. 057	32.356	. 100
2100	$34 \cdot 394$	8.076	. 006	16.152	. 025	24.227	. 057	32.303	.roi
15	8. 599	8.062	. 006	16.124	. 025	24.186	. 058	32.248	. 102
30	17.199	8.048	. 006	16.097	. 026	24.145	. 058	32.193	.103
45	25.798	8.035	. 007	16.069	. 026	24.104	. 059	32.138	. 104
2200	34.398	8.021	. 007	16.042	. 026	24.062	. 059	32.083	. 105
15	8.600	8.006	. 007	16.013	. 026	24.019	. 060	32.026	.106
30	17.201	7.992	. 007	15.984	. 027	23.976	. 060	31.968	.107
45	25.801	7.978	. 007	15.955	. 027	23.933	. 061	31.911	. 108
2300	34.402	7.963	. 007	15.927	. 027	23.890	. 061	31.853	.109
15	8.602	7.948	. 007	15.897	. 027	23.845	. 062	31.794	.109
30	17.203	7.933	. 007	15.867	. 028	23.800	. 062	31.734	. 110
45	25.804	7.918	. 007	15.837	. 028	23.756	. 063	31.674	. 111
2400	34.406	7.904	. 007	15.807	. 028	23.71 I	. 063	31.614	. 112
15	8.603	7.888	. 007	15.776	. 028	23.664	. 064	3 L .552	.113
30	17.205	7.872	. 007	15.745	. 029	23.617	.064	31.489	.114
45	25.808	7.857	. 007	15.713	. 029	23.570	. 065	31.427	.115
2500	34.410	7.841	. 007	15.682	. 029	23.524	. 065	31.365	. 116
15	8.604	7.825	. 007	15.650	. 029	23.475	. 065	31.300	. 117
30	17.207	7.809	. 007	15.617	. 029	23.426	. 066	31.235	.117
45	25.811	7.793	. 007	15.585	.030	23.378	. 067	31.170	. 118
2600	34.415	7.776	. 007	15.553	. 030	23.329	. 067	31.106	. 119
15	8.605	7.760	. 007	15.519	. 030	23.279	. 067	31.039	. 120
30	17.210	7.743	. 008	15.486	. 030	23.229	. 068	30.972	. 121
45	25.814	7.726	. 008	15.452	. 030	23.179	. 068	30.905	. 121
2700	34.419	7.709	. 008	15.419	.031	23.128	. 069	30.838	. 122
15	8.606	7.692	. 008	15.384	.031	23.076	. 069	30.769	. 123
30	17.212	7.675	. 008	15.350	.03I	23.024	. 070	30.699	.124
45	25.818	7.657	. 008	15.315	. 031	22.972	. 070	30.630	. 124
2800	34.424	7.640	. 008	15.280	. 031	22.920	. 070	30.560	. 125
15	8.607	7.622	. 008	15.244	. 031	22.866	. 071	30.489	. 126
30	17.215	7.604	. 008	15.208	. 032	22.813	. 071	30.417	. 127
45	25.822	7.586	. 008	15.173	.032	22.759	. 072	30.345	. 127
2900	34.430	$7 \cdot 568$. 008	15.137	. 032	22.705	. 072	30.274	. 128
	8.609	7.550	. 008	15.100	. 032	22.650	. 072	30.200	. 129
30	17.217 25.826	7.531	. 008	15.063	. 032	22.594	. 073	30.125	. 130
45	25.826	7.513	. 008	15.026	. 033	22.539	. 073	30.051	. 30
3000	34.435	7.494	. 008	14.989	. 033	22.483	. 074	29.978	13^{1}

[Derivation of table explaiued on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR-							
		${ }_{15}{ }^{\prime}$ longitude.		30^{\prime} longitude.		45^{\prime} longitude.		2° lougitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inckes.	Inckes.	Inches.
$30^{\circ} 00^{\prime}$		7.494	. 008	14.989	. 033	22.483	. 074	29.978	. 31
15	8.610	7.475	. 008	14.951	. 033	22.426	. 074	29.902	.131
30	17.220	$7 \cdot 456$. 008	14.913	. 033	22.369	. 074	29.825	.132
45	25.830	7.437	. 008	14.874	. 033	22.312	. 075	29.749	. 133
$3{ }^{1} 00$	34.440	7.418	. 008	14.836	. 033	22.254	. 075	29.672	. 133
15	8.611	7.398	. 008	14.797	.033	22.195	. 075	29.594	. 134
30	17.213	7.379	. 008	14.758	. 034	22.137	. 076	29.515	. 135
45	25.834	7.359	. 008	14.718	. 034	22.078	. 076	29.437	. 35
3200	34.446	$7 \cdot 340$. 008	14.679	. 034	22.019	. 076	29.358	. 136
15	8.613	7.319	. 008	14.639	. 034	21.958	. 077	29.278	. 136
30	17.225	7.299	. 009	14.598	. 034	21.898	. 077	29.197	. 137
45	25.838	7.279	. 009	14.558	. 034	21.837	. 077	29.116	. 137
3300	34.451	7.259	. 009	14.518	. 034	21.777	. 078	29.036	. 138
15	8.614	7.238	. 009	14.476	. 035	21.714	. 078	28.953	. 138
30	17.228	7.217	. 009	14.435	. 035	21.652	. 078	28.869	. 139
45	25.842	7.197	. 009	14.393	. 035	21.590	. 078	28.786	. 39
3400	34-456	7.176	. 009	14.352	. 035	21.527	. 079	28.703	. 140
15	8.615	7.154	. 009	14.309	. 035	21.464	. 079	28.618	.14I
30	17.23 r	7.133	. 009	I4.266	. 035	21.400	. 079	28.533	. 141
45	25.846	7.112	. 009	14.224	. 035	21.336	. 080	28.448	. 142
3500	34.462	7.091	. 009	14.18I	. 035	21.272	. 080	28.362	. 142
15	8.617	7.069	. 009	14.138	.036	21.207	. 880	28.275	. 142
30	17.234	7.047	. 009	14.094	. 036	21.141	. 080	28.188	. 143
45	25.851	7.025	. 009	14.050	. 036	21.076	. 080	28.101	. 143
3600	34.468	7.003	. 009	14.007	. 036	21.010	. 081	28.014	. 144
15	8.618	6.981	. 009	13.962	. 036	20.943	. 081	27.924	. 144
30	17.237	6.959	. 009	13.917	.036	20.876	.081	27.835	. 144
45	25.855	6.936	. 009	13.873	. 036	20.809	. 081	27.745	. 145
3700	34.474	6.914	. 009	13.828	. 036	20.742	. 082	27.655	. 145
15	8.620	6.89 I	. 009	13.782	. 036	20.673	. 082	27.564	
30	17.240	6.868	. 009	13.736	. 036	20.604	. 082	27.472	. 146
45	25.860	6.845	. 009	13.690	. 037	20.536	. 082	27.381	. 146
3800	34.480	6.822	. 009	1 3.645	. 037	20.467	. 082	27.289	. 147
15	8.62 I	6.799	. 009	13.598	. 037	20.397	. 083	27.196	. 147
30	17.243	6.775	. 009	13.551	. 037	20.326	. 083	27.102	. 147
45	25.864	6.752	. 009	13.504	. 037	20.256	. 083	27.008	. 147
3900	34.485	6.729	. 009	13.457	. 037	20.186	. 083	26.914	. 148
		6.705	. 009	I 3.409	. 037	20.114	. 083	26.819	. 148
30	17.246	6.681	. 009	I $3 \cdot 36 \mathrm{I}$. 037	20.042	. 083	26.723	. 148
45	25.868	6.657	. 009	13.314	. 037	19.970	. 084	26.627	. 148
4000	34.491	6.633	. 009	13.266	. 037	19.899	. 084	26.532	. 149

[Derivation of table explained on pp. Hiii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR-							
		15 ${ }^{\text {l }}$ longitude.		30^{\prime} longitude.		45^{\prime} longitude.		r° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inihes.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$40^{\circ} 00^{\prime}$		6.633	. 009	13.266	.037	19.899	.084	26.532	. 149
15	8.624	6.608	. 009	13.217	. 037	19.825	. 084	26.434	. 149
30	17.249	6.584	. 009	13.168	. 037	19.752	. 084	26.336	. 149
45	25.873	6.560	. 009	13.119	. 037	19.679	. 084	26.238	.149
4100	34.497	6.535	. 009	13.070	037	19.605	. 084	26.140	.150
15	8.625	6.510	. 009	13.020	. 037	19.530	. 084	26.041	. 150
30	17.250	6.485	. 009	12.970	. 037	19.456	. 084	25.94 I	.150
45	25.875	6.460	. 009	12.920	. 037	19.381	. 084	25.841	.150
4200	34.500	6.435	. 009	12.87 I	. 037	19.306	. 085	25.74 I	. 150
15	8.627	6.410	. 009	12.820	. 037	19.230	.085	25.640	. 150
30	17.255	6.385	. 009	12.769	. 038	19.154	.085	25.538	. 51
45	25.882	6.359	. 009	12.718	. 038	19.077	. 085	25.436	. 51
4300	34.510	6.334	. 009	12.667	.038	19.001	. 085	25.335	. 51
15	8.629	6.308	. 009	12.615	. 038	18.923	. 085	25.231	. 151
30	17.257	6.282	. 009	12.563	. 338	18.845	. 085	25.127	. 151
45	25.886	6.256	. 009	12.512	. 038	18.767	. 085	25.023	. 51
4400	34.515	6.230	. 009	12.460	. 038	18.689	. 085	24.919	. 151
15	8.630	6.203	. 009	12.407	. 038	18.610	.085	24.814	. 151
30	17.261	6.177	. 009	12.354	. 038	18.531	.085	24.708	. 151
45	25.891	6.151	. 009	12.301	. 038	18.452	. 085	24.603	. 51
4500	34.522	6.124	. 009	12.249	. 038	18.373	. 085	24.497	. 151
15	8.632	6.097	. 009	12.195	. 038	18.292	. 085	24.390	. 151
30	17.264	6.071	. 009	12.141	. 038	18.212	. 085	24.283	. 51
45	25.896	6.044	. 009	12.088	. 038	18.131	. 085	24.175	. 515
4600	34.528	6.017	. 009	12.034	. 038	18.051	.085	24.068	. 151
15	8.633	5.990	. 009	11.979	. 038	17.969	.085	23.959	
30	17.267	5.962	. 009	11.925	. 338	17.887	.085	23.849	. 55
45	25.901	5.935	. 009	11.870	. 038	17.805	. 085	23.740	. 51
4700	34.534	5.908	. 009	11.815	. 038	17.723	. 085	23.631	. 151
15	8.635	5.880	. 009	11.760	.038	17.640	. 085	23.520	. 151
30	17.270	5.852	. 009	11.704	. 038	17.556	. 085	23.408	. 151
45	25.905	5.824	. 009	11.648	. 038	17.473	. 085	23.297	. 51
4800	34.540	5.796	. 009	11.593	.038	17.389	. 085	23.186	. 150
15	8.637	5.768	. 009	I1.536	. 038	17.305	.085	23.073	.150
30	17.273	5.740	. 009	11.480	. 038	17.220	.084	22.960	.150
45	25.910	5.712	. 009	I 1.424	. 037	17.135	. 084	22.847	. 150
4900	34.546	5.684	. 009	11.367	. 037	17.051	. 084	22.734	. 150
	8.638 17.276		. 009	11.310	. 037	16.965	. 084	22.620	
30	17.276 25.914	5.626	. 009	11.253	. 037	16.879	. 084	22.505	. 150
45	25.914	$5 \cdot 598$. 009	1 I .195	. 037	16.793	. 084	22.39 I	. 150
5000	34.552	5.569	. 009	IJ. 138	. 037	16.707	. 084	22.276	.150

[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED Parallel for -							
		15^{\prime} longitude.		30^{\prime} longitude.		45^{\prime} longitude.		x° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$50^{\circ} 00^{\prime}$		5.569	. 009	11.138	. 037	16.707	. 084	22.276	.150
15	8.640	5.540	. 009	11.080	. 037	16.620	. 084	22.160	. 149
30	17.279	5.51 I	. 009	11.022	. 037	16.532	. 084	22.043	. 149
45	25.919	$5 \cdot 482$. 009	10.963	. 037	16.445	. 083	21.927	. 149
5100	$34 \cdot 558$	$5 \cdot 453$. 009	10.905	. 037	16.358	. 083	21.810	. 148
15	8.641	5.423	. 009	10.846	. 037	16.269	. 083	21.692	. 148
30	17.282	5.394	. 009	10.787	. 037	16.181	. 083	21.574	. 148
45	25.924	$5 \cdot 364$. 009	10.728	. 037	16.092	. 083	21.456	. 147
5200	34.565	$5 \cdot 334$. 009	10.669	. 037	16.004	. 083	21.338	. 147
15	8.643	5.305	. 009	10.609	. 036	15.914	. 082	21.218	. 146
30	17.285	5.275	. 009	10.549	. 036	15.824	. 082	21.099	. 146
45	25.928	5.245	. 009	10.490	. 036	15.734	. 082	20.979	. 145
5300	34.571	5.215	. 009	10.430	. 036	15.645	. 082	20.860	. 145
15	8.644	5.185	. 009	10.369	. 036	I 5.554	. 082	20.738	. 145
30	17.288	5.154	. 009	10.309	. 036	15.463	.08I	20.617	. 144
45	25.932	5.124	. 009	10.248	. 036	15.372	.08I	20.496	. 144
5400	34.576	5.094	. 009	10.187	. 036	'15.281	.08I	20.374	. 144
15	8.646	5.063	. 009	10.126	. 036	15.189	. 081	20.252	. 143
30	17.291	5.032	. 009	10.064	. 036	15.097	.080	20.129	. 143
45	25.937	5.002	. 009	10.003	. 036	15.004	.080	20.006	.142
5500	34-582	4.971	. 009	9.942	. 036	14.912	. 080	19.883	. 142
15	8.647	4.940	. 009	9.879	. 035	14.819	. 080	19.759	. 141
30	17.294	4.909	. 009	9.817	. 035	14.726	. 079	19.634	. 141
45	25.941	4.878	. 009	9.755	. 035	14.633	. 079	19.510	.140
5600	34.588	4.846	. 009	9.693	. 035	14.539	. 079	19.386	. 140
15	8.648	4.815	. 009	9.630	. 035	14.445	. 079	19.260	. 140
30	17.297	4.784	. 009	9.567	. 035	14.35 I	. 078	19.134	. 139
45	25.946	4.752	. 009	9.504	. 035	14.256	. 078	19.008	. 39
5700	34.594	4.720	. 009	9.44I	. 035	14.162	. 078	18.882	. 138
	8.650	4.689	. 009	9.377	. 035	14.066	. 077	18.754	. 138
30	17.300	4.657	. 009	9-314	. 034	13.970	. 077	18.627	. 37
45	25.950	4.625	. 009	9.250	. 034	13.875	. 077	18.500	. 137
5800	34.600	$4 \cdot 593$. 009	9.186	. 034	13.779	. 076	18.372	. 136
15	8.651	4.561	. 008	9.122	. 034	13.683	. 076	18.244	. 135
30	17.303	4.529	. 008	9.058	. 034	13.586	. 076	18.115	. 35
45	25.954	4.497	. 008	8.993	. 034	13.490	. 075	17.986	. 34
5900	34-605	4.464	. 008	8.929	. 033	13.393	:075	17.858	. 134
15	8.653	$4 \cdot 432$. 008	8.864	. 033	13.296	. 075	17.728	-133
30	17.305	4.399	. 008	8.799	. 033	13.198	. 075	17.597	. 133
45	25.958	4.367	. 008	8.734	. 033	13.100	. 074	17.467	.132
6000	34.611	4.334	. 008	8.669	. 033	13.003	. 074	17.337	.131

Table 21.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $12 \delta^{2} \sqrt{20}$
[Derivatioc of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		${ }^{5} 5^{\prime}$ longitude.		30' longitude.		45' longitude.		1° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$60^{\circ} 00^{\prime}$		4.334	. 008	8.669	. 033	13.003	. 074	17.337	.131
15	8.654	$4 \cdot 301$. 008	8.603	. 032	12.904	. 074	17.206	.131
30	17.308	4.269	. 008	8.537	. 032	12.806	. 073	17.074	. 130
45	25.962	4.236	. 008	8.471	.032	12.707	. 073	16.943	. 129
6100	34.616	4.203	. 008	08.406	.032	12.608	.072	16.81 I	. 128
15	8.655	4.170	. 008	8.339	. 032	12.509	. 072	16.679	. 128
30	17.311	4.136	. 008	8.273	.032	12.410	. 072	16.546	.127
45	25.966	4.103	. 008	8.207	.03I	12.310	. 071	16.413	.126
6200	34.621	4.070	. 008	8.140	.03I	12.210	. 071	16.280	.125
15	8.657	4.036	. 008	8.073	. 031	12.110	. 071	16.146	.125
30	17.313	4.003	. 008	8.006	.031	12.009	. 070	16.012	. 124
45	25.970	3.970	. 008	7.939	.03I	11.909	. 070	15.878	.123
6300	34.626	3.936	. 008	7.872	.031	11.808	. 069	15.744	. 122
15	8.658	3.902	. 008	7.804	. 030	11.707	. 069	15.609	. 122
30	17.316	3.868	. 007	7.737	. 030	11.605	. 068	15.474	. 121
45	25.974	3.835	. 007	7.669	.030	11.504	. 068	15.338	. 120
6400	34.632	3.801	. $007{ }^{\circ}$	7.602	. 030	11.402	. 067	15.203	.119
15	8.659	3.767	. 007	7.533	. 029	11.300	. 067	15.067	. 119
30	17.318	3.733	. 007	7.465	. 029	11.198	. 066	14.930	. 118
45	25.977	3.698	. 007	7.397	. 029	11.096	. 066	14.794	.117
6500	34.636	3.664	. 007	7.329	. 029	10.993	.065	14.658	.116
15	8.660	3.630	. 007	7.260	. 028	10.890	. 065	14.520	.115
30	17.321	3.596	. 007	7.191	. 028	10.787	. 064	14.383	.114
45	25.981	3.56I	. 007	7.123	. 028	10.684	. 064	14.245	. 113
6600	34.641	$3 \cdot 527$. 007	7.054	. 028	10.58 I	.063	14.108	. 112
15	8.661	3.492	. 007	6.984	. 028	10.477	. 063	13.969	. 111
30	17.323	3.458	. 007	6.915	. 027	10.373	. 062	13.830	. 111
45	25.984	3.423	. 007	6.846	. 027	10.269	. 062	13.692	. 110
6700	34.646	3.388	. 007	6.776	. 027	10.165	.061	13.553	. 109
15	8.663	3.353	. 007	6.706	. 027	10.060	. 061	13.413	. 108
30	17.325	3.318	. 007	6.637	. 026	9.955	. 060	13.273	
-45	25.988	3.283	. 007	6.567	. 026	9.850	. 060	I 3.134	. 106
6800	34.650	3.248	. 007	6.497	. 026	9.746	. 059	12.994	. 105
- 15	8.664	3.213	. 007	6.427	. 026	9.640		12.854	
30	17.327	3.178	. 006	6.356	. 025	9.535	. 058	12.713	. 103
45	25.991	3.143	. 006	6.286	. 025	9.429	. 058	12.572	. 102
6900	34.655	3.108	. 006	6.216	. 025	9.323	. 057	12.431	. 101
		3.072	. 006		. 025	9.217			. 100
30	17.329	3.037	. 006	6.074	. 024	9.111	. 056	12.148	
45	$25 \cdot 994$	3.002	. 006	6.003	. 024	9.005	. 056	12.006	. 098
7000	34.659	2.966	. 006	5.932	. 024	8.899	. 055	11.865	. 097

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $12 \theta^{1}$
[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
		15 ${ }^{\prime}$ longitude.		30^{\prime} longitude.		45^{\prime} longitude.		x° longitude.	
		x	y	x	y	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$70^{\circ} 00^{\prime}$		2.966	. 006	5.932	. 024	8.899	. 055	11.865	. 097
15	8.666	2.930	. 006	5.861	. 024	8.792	. 055	11.722	. 096
30	17.331	2.895	. 006	5.790	. 023	8.685	. 054	11.580	. 095
45	25.997	2.859	. 006	5.718	. 023	8.578	. 053	11.437	. 094
7100	34.663	2.824	. 006	5.647	. 023	8.471	. 052	11.294	. 093
15	8.667	2.788	. 006	5.576	. 023	8.363	. 052	I1.151	. 092
30	17.333	2.752	. 006	5.504	. 022	8.256	. 051	11.008	. 091
45	26.000	2.716	. 006	5.432	. 022	8.148	. 051	10.864	. 090
7200	34.667	2.680	.006	$5 \cdot 360$. 022	8.040	. 050	10.720	. 089
15	8.668	2.644	. 006	5.288	. 022	7.932	. 050	10.576	. 088
30	17.335	2.608	. 005	5.216	. 021	7.824	. 049	10.432	. 087
45	26.003	2.572	. 005	5.144	.02I	7.716	. 249	I0. 288	. 086
7300	34.670	2.536	. 005	5.072	. 021	7.608	. 048	10.144	. 085
15	8.668	2.500	. 005	4.999	. 021	7.499	. 048	9.998	. 084
30	17.337	2.463	. 005	4.927	. 020	7.390	. 047	9.854	. 083
45	26.006	2.427	. 005	4.854	. 020	7.28I	. 046	9.708	.08I
7400	34.674	2.391	. 005	4.782	. 020	7.172	. 045	9.563	. 080
15	8.669	2.354	. 005	4.709	. 020	7.063	. 044	9.417	. 079
30	17.339	2.318	. 005	4.636	. 019	6.954	. 044	9.272	. 078
45	26.008	2.281	. 005	4.563	. 019	6.844	. 043	9.126	. 077
7500	34.677	2.245	. 005	$4 \cdot 490$. 019	6.735	. 043	8.980	. 076
15	8.670	2.208	. 004	4.417	. 019	6.625	. 042	8.834	. 074
30	17.340	2.172	. 004	$4 \cdot 343$. 018	6.515	. 042	8.687	. 073
45	26.010	2.435	. 004	4.270	. 018	6.405	. 041	8.540	. 072
7600	34.680	2.098	. 004	4.197	. 018	6.296	. 040	8.394	. 071
15	8.671	2.062	. 004	4.123	. 018	6.185	. 040	8.247	. 069
30		2.025	. 004	4.050	. 017	6.075	. 039	8.100	. 068
45	26.013	1.988	. 004	3.976	. 017	5.964	. 038	7.952	. 067
7700	34.684	1.951	. 004	3.903	. 017	5.854	. 037	7.805	. 066
15	8.672	1.914	. 004	3.829	. 017	5.743	. 037	7.658	. 065
30	17.343	1.877	. 004	3.755	. 016	5.632	. 036	7.510	. 064
45	26.015	1.840	. 004	3.681	.016	5.522	. 036	$7 \cdot 362$. 063
7800	34.686	1.804	. 004	3.607	. 015	5.411	. 035	7.214	. 062
15	8.672	1.766	. 004	3.533	.OI 5	5.300	. 034	7.066	. 060
30	17.344	1.729	. 004	3.459	. 015	5.188	. 034	6.918	. 059
45	26.017	1. 692	. 004	3.385	.OI4	5.077	. 033	6.769	. 058
7900	34.689	1.655	. 004	3.310	. 014	4.966	. 032	6.621	. 057
15	8.673	1.618	. 003	3.236	. 014	4.854	. 031	6.472	. 055
30	17.346	I. 581	. 003	3.162	. 013	4.742	. 030	6.323	. 054
45	26.018	I. 544	. 003	3.087	. 013	4.63 I	. 030	6.174	. 053
8000	34.691	1.506	. 003	3.613	. 013	4.519	. 029	6.026	. 052

Smithsonian Tables.

Table 22.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\delta \frac{1}{8} \frac{1}{50}$
[Derivation of table explained on pp. liii-lvi.]

Bmithsonian Tables.
[Derivation of table explained on pp. liii-lvi.]

[Derivation of table explained on pp. liii-lvi.]

Table 22.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ${ }_{6 \frac{1}{8} \frac{1}{60} .}$
[Derivation of table explained on pp. liii-lvi.]

		ABSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED PARALLEL.			
		5^{\prime}	10^{\prime}	15	20^{\prime}	25^{\prime}	30^{\prime}				
$21^{\circ} 0^{\prime}$	Inches.	Inches.	Inches. 10.768	Inches.16.151	Inches.21.535	Inches.26.919	Inches.32.303		21°	22°	
	68.787	$5 \cdot 384$									
10	11.466	$5 \cdot 378$	10.755	16.133	$\begin{aligned} & 21.5 I I \\ & 21.486 \end{aligned}$	26.889	32.266				
20	22.932	$5 \cdot 372$	10.743	16.115		26.858	32.230	5^{\prime}	Inches. 0.001		
30	34.397	$5 \cdot 366$	ro.731	16.097	21.462	26.828	32.193			0.001	
40	45.863	$5 \cdot 359$	10.719	16.078	21.438	26.797	32.156		0.001		
50	57.329	$5 \cdot 353$	10.707	16.060	21.413	26.767	32.120	10	. .013	. 013	
2200	68.795	$5 \cdot 347$	10.694	16.042	2I. 389	26.736	32.083	20	.022.035.051	$\begin{array}{r} .023 \\ .036 \end{array}$$.052$	
10	I I 467	$5 \cdot 341$	10.682	16.022	21.363	$\begin{aligned} & 26.704 \\ & 26.672 \end{aligned}$	32.045	30			
20	22.934	$5 \cdot 334$	10.669	16.003	21.338		32.006				
30	34.401	5.328	10.656	15.984	21.312	26.64 L	31.969				
40	45.868	$5 \cdot 322$	10.643	15.965	21.287	26.609	31.930				
50	57.336	$5 \cdot 315$	10.631	15.946	2 I .26 I	26.577	31.892				
2300	68.803	$5 \cdot 309$	10.618	15.927	21.236	26.545	31.853		23°	24°	
10	11.469	$5 \cdot 302$	10.604	I 5.907	21.209	26.511	31.813				
20	22.937	5.296	10.591	15.887	21.182	26.478	31.774	${ }_{10}^{5}$	0.001	0.002	
30	34.406	5.289	10.578	15.867	2 I .156	26.445	31.733			. 006	
40	45.874	5.282	10.565	15.847	21.129	26.412	31.694	15		. 014	
50	57.343	5.276	10.55 I	15.827	21.102	26.378	31.654	20	. 024	. 025	
2400	68.812	5.269	10.538	15.807	21.076	26.345	31.614	30	. 054	$\begin{aligned} & .039 \\ & .056 \end{aligned}$	
10	11.470	5.263	10.526	15.789	21.052	26.315	$\begin{aligned} & \text { 3I. } 577 \\ & \text { 3I. } 535 \\ & \text { 3I. } 493 \\ & \text { 3I. } 450 \\ & \text { 3I.408 } \end{aligned}$				
20	22.940	5.256	10.512	15.767	21.023	26.279					
30	34.410	5.249	10.498	15.746	20.995	26.244					
40	45.880	5.242	10.483	15.725	20.967	26.209					
50	57.350	5.227	10.469	15.704	20.938	26.137	31.365			26°	
2500	68.821		10.455	15.682	20.910						
10	11.472	5.220	10.441	15.661	20.881	26.101	31.322	5	0.002	0.002	
20	22.943	5.213	10.426	15.639	20.852	26.065	31. 279	10	. 006	. 007	
30	34.415	5.206	10.412	15.618	20.824	26.029	31.235	15	. 014	.015	
40	45.886	5.199	10.397	15.596	20.795	25.993	31.192	20	. 026	. 026	
50	$57 \cdot 35^{8}$	5.191	10.383	15.575	20.766	25.958	31.149	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$.058$	$.059$	
2600	68.830	5.184	10.369	15.553	20.737	25.922	31.106				
10	11.473	5.177	10.354	15.531	20.708	25.884	31.061				
20	22.946	5.169	10.339	I 5.508 I 5.486	20.678 20.648	25.847 25.810	31.017 30.972				
30	34.419 45.892	5.162 5.154	10.324 10.309	15.486 15.463	20.648	25.810 25.772	30.972 30.927				
50	$57 \cdot 365$	5.147	10.294	15.441	20.588	25.735	30.882		27°	28°	
2700	68.838	5.140	10.279	15.419	20.558	25.698	30.838	5	0.002	0.002	
10	11.475	$5 \cdot 132$	10.264	I 5.396	20.528	25.659	30.791	10	.007 .015	.007 .016	
20	22.950	5.124	10.248	15.373 15.349	20.497	25.621 25.582	30.745	15	. 015	. 01028	
30 40	34.424 45.899	5.116	10.233 10.218	15.349 15.326	20.466 20.435	25.582 25.544	30.699 30.653	25	. 042	. 043	
50	45.899 57.374	5.101	10.202	15.3203 15.303	20.435 20.404	25.544 25.505	30.607	30	.061	. 063	
2800	68.849	5.093	ro.187	15.280	20.374	25.467	30.560				

Table 22.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\overline{\text { E }} \frac{1}{8} छ \sigma$.
[Derivation of table explained on pp . liii-lvi.]

[Derivation of table explained on pp. liii-lvi.]

[Derivation of table explained on pp. liii-lvi.]

		AbSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED Parallel.		
		$5{ }^{\prime}$	10^{\prime}	15^{\prime}	20^{\prime}	25^{\prime}	30^{\prime}			
$42^{\circ} \mathrm{OO}$	Inches,	Inches.	Inches.	Inches.12.871	Inches.17.161	Inches.21.451	Inches.25.742		42°	43°
	69.007	4.290	8.581							
10	11.503	4.279	8.558	12.837	17.116	21.395	25			
20	23.006	4.268	8.535	12.803	17.071	21.338	25.606			
30	34.510	4.256	8.513	12.769	17.025	21.282	25.538	5	Inches. 0.002	Inches.
40	46.013	4.245	8.490	12.735	16.980	21.225	25.470	10	. 0.08	0.002 .008
50	57.516	4.234	8.467	12.701	16.935	21.169	25.402	10 15	.008 .019	. 0108
4300	69.019	4.222	8.445	12.667	16.890	21.112	25.334	20	.033 .052	. 033
10	11.505	4.211	8.422	12.633	16.844	21.054	25.265	30	. 075	. 075
20	23.010	4.199	8.399	12.598	16.798	20.997	25.196			
30	34.515	4.188	8.376	12.564	16.751	20.939	25.127			
40	46.020	4.176	8.353	12.529	16.705	20.882	25.058			
50	57.525	4.165	8.330	12.494	16.659	20.824	24.989			
4400	69.030	4.153	8.307	12.460	16.613	20.767	24.920		44°	45°
10	11.507	4.142	8.283	12.425	16.566	20.708	24.849			
20	23.014	4.130	8.260	12.390	16.519	20.649	24.779	5	0.002	0.002
30	34.522	4. 118	8.236	12.354	16.473	20.591	24.709	10	. 008	. 008
40	46.029	4.106	8.213	12.319	16.426	20.532	24.638	15	. 019	. 019
50	57.536	4.095	8.189	12.284	16.379	20.473	24.568	20	. 034	. 034
4500	69.043	4.083	8.166	12.249	16.332	20.415	24.498	25 30	$\begin{aligned} & .052 \\ & .075 \end{aligned}$. 053
10	11.509	4.071	8.142	12.213	16.284	20.355	24.426			
20	23.018	4.059	8.118	12.177	16.236	20.295	24.354			
30	34.528	4.047	8.094	12.141	16.188	20.236	24.283			
40	46.037	4.035	8.070	12.105	16.141	20.176	24.211			
50	57.546	4.023	8.046	12.070	16.093	20.116	24.139			
4600	69.055	4.011	8.023	12.034	16.045	20.056	24.068		46°	47°
10	11.511	3.999	7.998	11.997	15.997	19.996	23.995	5	0.002	0.002
20	23.023	3.987	7.974	11.961	15.948	19.935	23.922	10	. 008	. 008
30	34.534	3.975	7.950	11.925	I 5.899	19.974	23.849	15	. 019	. 019
40	46.045 57.557	3.963	7.925	11.888	15.851	19.813	23.776	20	. 034	. 034
50	57.557	3.951	7.901	11.852	15.802	19.753	23.703	25	. 053	. 052
4700	69.068	3.938	7.877	II.815	I 5.754	19.692	23.630	30	. 076	. 075
10	11.513	3.926	7.852	11.778	15.704	19.630	23.556			
20	23.027	3.914	7.827	11.741	15.655	19.569	23.482			
30	34.540	3.981	7.803	11.704	15.606	19.507	23.408			
40	46.053	3.889	7.778	11.667	15.556	19.445	23.334			
50	57.567	3.877	7.753	11.630	15.507	19.383	23.260		48°	49°
4800	69.080	3.864	7.729	11.593	15.457	19.322	23.186		0.002	0.002
10	11.516	3.852	7.704	11.555	15.407		23.111	10	0.002 .008	. 008
20	23.031	3.839	7.679	11.518	15.357	19.196	23.035	15	. 019	. 019
30	34.546	3.827	7.653	11.480	15.307	19.134	22.960	20	. 033	. 033
40	46.062	3.814	7.628	11.442	15.257	19.071	22.885	25 30	. 052	. 052
50	57.577	3.802	7.603	11.405	15.206	19.008	22.810	30	. 075	. 075
4900	69.093	3.789	7.578	11.367	15.156	18.945	22.734			

Bmithsonian Tables.
[Derivation of table explained on pp. liii-lvi.]

		AbSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED PARALLEL.		
		5^{\prime}		15^{\prime}		25^{\prime}	30^{\prime}			
$49^{\circ} 00^{\prime}$	Inches.	Inches.	Irches.	Ynches.	Inches.	Inches.	Inches.			50°
	69.093	3.789	7.578	11.367	15.156	18.945	22.734	堅感	49°	50°
10	11.517	3.776	7.553	11.329	15.105	18.882	22.658			
20	23.035	3.764	7.527	1 I .291	15.054	18.818	22.581		Inches.	Inches.
30	34.552	3.75 I	7.502	11.253	15.003	18.754	22.505	$5{ }^{\prime}$	0.002	0.002
40	46.070	3.738	7.476	1 I .214	14.952	18.690	22.429	10	. 0008	. 008
50	57.587	3.725	$7 \cdot 451$	11.176	14.901	18.627	$22.35{ }^{2}$	15	.008 .019	. 0108
5000	69.105	3.713	7.425	11.138	14.850	18.563	22.276	20	.033 .052	.033
10	11.520	3.700	7.399	11.099	14.799	18.499	22.198	30	. 075	. 075
20	23.039	3.687	7.374	11.060	14.747	18.434	22.121			
30	34.558	3.674	$7 \cdot 348$	11.021	14.695	18.369	22.043			
40	46.078 57.598	3.665 3.648	7.322 7.296	10.983	14.644	18.305	21.965 21.888			
50	57.598	3.648	7.296	10.944	14.592	18.240				
5100	69.117	3.635	7.270	10.905	14.540	18.176	21.8 I!		55°	52°
10	II.521	3.622	7.244	10.866	14.488	18.110	21.732			
20	23.043	3.609	7.218	10.827	14.436	18.045	21.653	5	0.002	0.002
30	34.564	$3 \cdot 596$	7.191	10.787	14.383	17.979	21.574	10	. 008	. 008
40 50	46.086 57.607	3.583 3.570	7.165 7.139	10.748 10.709	14.330 14.278	17.913	21.496 21.417	15	.019	. 018
50	57.607	3.570	7.139	10.709	14.278	17.848	21.417	20	. 033	. 033
5200	69.128	3.556	7.113	10.669	14.226	$17.78{ }^{2}$	21.33^{8}	25 30	. 075	. 073
10	11.523	3.543	7.086	10.629	14.172	17.716	21.259			
20	23.047	3.530	7.060	10.589	14.119	17.649	21.179			
30	34.570	3.516	7.033	10.550	14.066	17.583	21.099			
40	46.094	3.503	7.006	10.510	14.013	17.516	21.019			
50	57.617	3.490	6.980	10.470	13.960	17.450	20.939		53°	54°
5300	69.140	3.477	6.953	10.430	13.906	17.383	20.860			
10	11.525	3.463	6.926	10.389	${ }_{1} 3.852$	17.316	20.779	5		
20	23.051	3.450	6.899	10.349	r 3.798	17.248	20.698	10	. 008	.008
30	34.576	3.436	6.872	10.309	13.745	17.181	20.617	15	. 018	. 018
40	46.102 57.627	3.423 3.409	6.845	10.268	13.691 13637	17.114 17.046	20.536	20	.032 .050	
50	57.627	3.409	6.818	10.228	13.637	17.046	20.455	25	$\begin{aligned} & .050 \\ & .073 \end{aligned}$.050 .072
5400	69.152	3.396	6.791	10.187	1 3.583	16.979	20.374			
10	11.527	3.382	6.764	10.146	13.528	16.910	20.292			
20	23.055	$3 \cdot 368$	6.737	10.105	13.474	16.842	20.210			
30 40	34.582 46.109	$3 \cdot 355$ $3 \cdot 34$	6.709 6.682	10.064	13.419 13.364	16.774 16.706	$\begin{aligned} & 20.128 \\ & 20.047 \end{aligned}$	-		
40 50	46.109 57.636	$3 \cdot 34 \mathrm{I}$ $3 \cdot 327$	6.682 6.655	10.023 9.982	13.364 13.310	16.706 16.637	20.047 19.964		55°	56°
5500	69.164	3.314	6.628	9.941	13.255	16.569	19.883	5	0.002	0.002
10	11.529	$3 \cdot 300$	6.600	9.900	13.200	16.500	19.800	10	.008 .018	. 008
20	23.059	3.286	6.572	9.859	13.145	16.431 16.362	19.717	20	. 032	. 031
30	34.588 46.117	3.272 3.258	6.545 6.517	9.817 9.776	13.089 13.034	16.362 16.293	$\begin{aligned} & 19.634 \\ & 19.551 \end{aligned}$	25	. 049	. 049
40 50	46.117 57.646	3.258 3.245	6.517 6.489	9.776 9.734	13.034 12.979	16.293 16.224	$\begin{aligned} & 19.55 \mathrm{I} \\ & 19.468 \end{aligned}$	30	. 07 I	. 070
5600	69.176	3.231	6.462	9.693	12.924	16.155	19.385			

[Derivation of table explained on pp. liii-lvi.]

		ABSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED parallel.		
			$10^{\prime \prime}$	15^{\prime}	20^{\prime}	25^{\prime}	30^{\prime}			
$56^{\circ} 00^{\prime}$	Inches.	Inches.$3.23 \mathrm{I}$	Inches. 6.462	Inches.9.693	Inches. 12.924	Inches. 16.155	Inches.19.385		56°	57°
	69.176									
10	11.531	3.217	6.434	9.651	12.868	16.085	19.301			
20	23.063	3.203	6.406	9.609	12.812	16.015	19.217		Inches.	Inches.
30	34.594	3.189	6.378	9.567	12.756	15.945	19.134	5'	0.002	0.002
40	46.125	3.175	6.350	9.525	12.700	15.875	19.050 18.966	10	. 008	. 008
50	57.656	3.161	6.322	9.483	12.644	15.805	18.966	15	. 018	. 017
5700	69.188	3.147	6.294	9.44 I	12.588	15.735	18.882	20	. 031	.031
10	11.533	3.133	6.266	9.398	12.53 I	15.664	18.797	30	. 070	. 069
20	23.066	3.119	6.237	$9 \cdot 356$	12.475	15.594	18.712			
30	34.599	3.104	6.209	9.314	12.418	15.523	18.627			
40	46.132	3.090	6.181	9.271	12.362	15.452	18.542			
50	57.666	3.076	6.152	9.229	12.305	15.381	18.457			
5800	69.199	3.062	6.124	9.186	12.248	15.311	18.373		5°	59°
10	11.535	3.048	6.096	9.143	12.191	15.239	18.287			
20	23.070	3.034	6.067	9.101	12.134	15.168	18.201	5	0.002	0.002
30	34.605	3.019	6.038	9.058	12.077	15.096	18.115	10	. 008	. 007
40	46.140 57.675	3.005	6.010	9.015	12.020	15.025	18.029	15	. 017	. 017
50	57.675	2.991	5.981	8.972	11.962	14.953	17.944	20	. 030	. 030
5900	69.210	2.976	$5 \cdot 953$	8.929	11.905	14.882	17.858	30	. 068	. 067
10	11.537	2.962	5.924	8.885	11.847	14.809	17.771			
20	23.074	2.947	5.895	8.842	11.790	14.737	17.684			
30	34.610	2.933	5.866	8.799	11.732	14.665	17.597			
40	46.147	2.918	5.837	8.755	11.674	14.592	17.510			
50	57.684	2.904	5.808	8.712	11.616	14.520	17.424		60°	61°
6000	69.221	2.890	5.779	8.669	I 1.558	14.448	17.337			
10	11.539	2.875	5.750	8.625	11.500	14.375	17.249	5	0.002	0.002
20	23.077	2.860	5.721	8.581	11.44 I	14.302	17.162	10	. 007	. 007
30	34.616	2.846	5.691	8.537	11.383	14.229	17.074	15	. 016	. 016
40	46.154	2.831	5.662	8.493	11.324	14.156	16.987	25	. 029	. 029
50	57.693	2.816	5.633	8.450	11.266	14.083	16.899	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & .045 \\ & .065 \end{aligned}$.045 .064
6100	69.232	2.802	5.604	8.406	11.208	14.010	16.81 I			
10	11.540	2.787	$5 \cdot 574$	8.361	11.148	13.936	16.723			
20	23.081	2.772	$5 \cdot 545$	8.317	11.090	13.862	16.634			
30	34.621	2.758	5.115	8.273	11.030	13.788	16.546			
40	46.162	2.743	5.486	8.229	10.972	13.715	16.457		62 ${ }^{\circ}$	
50	57.702	2.728	$5 \cdot 456$	8.184	10.912	13.641	16.369			63
6200	69.242	2.713	5.427	8.140	10.854	13.567	16.280	5	0.002	0.002
10	11.542	2.699	5.397	8.096	10.794	13.493	16.191	10	. 007	. 007
20	23.084	2.684	$5 \cdot 367$	8.051	10.734	13.418	16.102	15	. 0168	. 015
30	34.626	2.669	$5 \cdot 337$	8.006	10.675	13.344	16.012	25	. 044	. 043
40 50	46.168 57.710	2.654 2.639	$5 \cdot 308$ 5.278	7.961 7.917	10.615 10.556	13.269 13.195	15.923 15.833	30	. 063	. 061
6300	69.253	2.624	5.248	7.872	10.496	13.120	15.744			

Table 22.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\overline{88} \frac{1}{8} 6 \sigma^{\frac{1}{6}}$.
[Derivatios of table explained on pp. liii-lvi.]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{6}{|c|}{ABSCISSAS OF DĖVELOPED PARALLEL.} \& \multicolumn{3}{|l|}{\multirow[b]{2}{*}{ORDINATES OF DEVELOPED PARALLEL.}}

\hline \& \& 5 \& 10^{\prime} \& \& 20^{\prime} \& 25^{\prime} \& 30^{\prime} \& \& \&

\hline \multirow[b]{2}{*}{$63^{\circ} 00^{\prime}$} \& Inches. \& Inc \& Inches. \& Inches. \& Inches. \& Inches. \& Inches. \& \multirow[t]{2}{*}{|} \& \multirow[t]{2}{*}{63°} \& \multirow[t]{2}{*}{64°}

\hline \& 69.253 \& 2.624 \& 5.248 \& 7.872 \& 10.496 \& 13.120 \& 15.744 \& \& \&

\hline 10 \& 11.544 \& 2.609 \& 5.218 \& 7.827 \& 10.436 \& 13.045 \& ${ }_{1} 5.654$ \& \& \&

\hline 20 \& 23.087 \& 2.594 \& 5.188 \& 7.782 \& 10.376 \& $12.97{ }^{\circ}$ \& 15.564 \& \& Inches. \& Inches.

\hline 30 \& 34.631 \& 2.579 \& 5.158 \& 7.737 \& 10.316 \& 12.895 \& 15.473 \& \multirow[t]{2}{*}{10 ${ }^{5}$} \& \multirow[t]{2}{*}{0.002
.007} \& \multirow[b]{2}{*}{0.002
.007}

\hline 40 \& 46.175
57.718 \& 2.564 \& 5.128 \& 7.692 \& 10.256 \& 12.820 \& 15.383

5 \& \& \&

\hline 50 \& 57.718 \& 2.549 \& 5.098 \& 7.647 \& 10.196 \& 12.745 \& 15.293 \& 15 \& . 015 \& . 015

\hline 6400 \& 69.262 \& 2.534 \& 5.068 \& 7.602 \& 10.136 \& 12.670 \& 15.203 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 25 \\
& 30
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& .043 \\
& .061
\end{aligned}
$$

\]} \& \[

$$
\begin{aligned}
& .041 \\
& .060
\end{aligned}
$$
\]

\hline 10 \& 11.545 \& 2.519 \& 5.037 \& 7.556 \& 10.075 \& 12.594 \& 15.112 \& \& \&

\hline 20 \& 23.091 \& 2.504 \& 5.007 \& 7.511 \& 10.014 \& 12.518 \& 15.022 \& \& \&

\hline 30 \& 34.636 \& 2.488 \& 4.977 \& $7 \cdot 465$ \& 9.954 \& 12.442 \& 14.930 \& \& \&

\hline 40 \& 46.182 \& 2.473 \& 4.947 \& 7.420 \& 9.893 \& 12.367 \& 14.840 \& \& \&

\hline 50 \& 57.727 \& 2.458 \& 4.916 \& 7.374 \& 9.832 \& 12.291 \& 14.749 \& \& \&

\hline 6500 \& 69.272 \& 2.443 \& 4.886 \& $7 \cdot 329$ \& 9.772 \& 12.215 \& 14.658 \& \multicolumn{2}{|r|}{65°} \& 66°

\hline 10 \& I 1. 547 \& 2.428 \& 4.855 \& 7.283 \& 9.711 \& 12.139 \& 14.566 \& \multirow[b]{2}{*}{5} \& \& \multirow[b]{2}{*}{0.002}

\hline 20 \& 23.094 \& 2.412 \& 4.825 \& 7.237 \& 9.650 \& 12.062 \& 14.474 \& \& 0.002
.006 \&

\hline 30 \& 34.641 \& 2.397 \& 4.794 \& 7.191 \& 9.588 \& 11.986 \& 14.383 \& 10 \& . 006 \& $$
.006
$$

\hline 40
50 \& 46.188 \& 2.382
2.366 \& 4.764 \& 7.145 \& 9.527
9.466 \& 11.909

11.833 \& \multirow[t]{2}{*}{14.199} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 20 \\
& 25
\end{aligned}
$$} \& .026 \& \multirow[t]{2}{*}{. 025}

\hline 50 \& 57.735 \& 2.366 \& 4.733 \& 7.100 \& 9.466 \& 11.833 \& \& \& . 040 \&

\hline 6600 \& 69.282 \& 2.351 \& 4.702 \& 7.054 \& 9.405 \& 11.756 \& 14.107 \& 30 \& . 058 \& . 056

\hline 10 \& 1 I .548 \& 2.336 \& \multirow[t]{2}{*}{4.672
4.641} \& \multirow[t]{2}{*}{7.007
6.961} \& \multirow[t]{2}{*}{9.343
9.282} \& \multirow[t]{2}{*}{11.679
11.602} \& 14.015 \& \& \&

\hline 20 \& 23.097 \& 2.320 \& \& \& \& \& \multirow[t]{2}{*}{13.922
13.830} \& \& \&

\hline 30 \& 34.646 \& 2.305 \& 4.610 \& \multirow[t]{2}{*}{6.915

6.869} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 9.220 \\
& 9.158
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 11.525 \\
& 11.448
\end{aligned}
$$
\]} \& \& \& \&

\hline 40 \& 46.194 \& 2.290 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 4 \cdot 579 \\
& 4 \cdot 548
\end{aligned}
$$} \& \& \& \& \multirow[t]{2}{*}{13.738

13.645} \& \& \multirow[b]{2}{*}{67°} \& \multirow[b]{2}{*}{68°}

\hline 50 \& 57.742 \& 2.274 \& \& $$
\begin{aligned}
& .009 \\
& 6.823
\end{aligned}
$$ \& 9.097 \& 11.371 \& \& \& \&

\hline 6700 \& 69.291 \& 2.259 \& 4.518 \& 6.776 \& 9.035 \& I 1.294 \& 13.553 \& \multirow[b]{2}{*}{5} \& \multirow[b]{2}{*}{$$
\begin{array}{r}
0.001 \\
.006
\end{array}
$$} \& \multirow[b]{2}{*}{0.001}

\hline 10 \& 11.550 \& 2.243 \& 4.487 \& 6.730 \& 8.973 \& 11.217 \& 13.460 \& \& \&

\hline 20 \& 23.100 \& 2.228 \& \multirow[t]{2}{*}{4.455
4.424} \& \multirow[t]{2}{*}{6.683

6.637} \& \multirow[t]{2}{*}{8.91 I} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { II.I } 39 \\
& \text { I } \mathbf{y} .06 \mathbf{n}
\end{aligned}
$$} \& 13.366 \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 15 \\
& 20
\end{aligned}
$$
\]} \& .014 \& . 006

\hline 30 \& 34.650 \& 2.212 \& \& \& \& \& \multirow[t]{2}{*}{$$
\begin{array}{r}
13.273 \\
13.180
\end{array}
$$} \& \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& .024 \\
& .038
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{. 023}

\hline 40 \& 46.200 \& 2.197 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 4.393 \\
& 4.362
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 6.590 \\
& 6.543
\end{aligned}
$$

\]} \& 8.787 \& \[

$$
\begin{aligned}
& 11.061 \\
& 10.984
\end{aligned}
$$

\] \& \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 25 \\
& 30
\end{aligned}
$$
\]} \& \&

\hline 50 \& 57.750 \& 2.181 \& \& \& 8.724 \& 10.906 \& 13.087 \& \& . 054 \& . 053

\hline 6800 \& 69.300 \& 2.166 \& 4.331 \& 6.497 \& 8.662 \& 10.828 \& 12.994 \& \& \&

\hline 10 \& 11.552 \& 2.150 \& \multirow[t]{2}{*}{4.300

4.269} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 6.450 \\
& 6.403
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 8.600 \\
& 8.538
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 10.750 \\
& 10.672
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 12.900 \\
& 12.806
\end{aligned}
$$
\]} \& \& \&

\hline 20 \& 23.103 \& 2.134 \& \& \& \& \& \& \& \&

\hline 30 \& 34.654 \& 2.119 \& \multirow[t]{2}{*}{4.237
4.206} \& \multirow[t]{2}{*}{6.356
6.309} \& \multirow[t]{2}{*}{8.475

8.412} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 10.594 \\
& 10.516 \\
& 10.438
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 12.712 \\
& 12.619 \\
& 12.525
\end{aligned}
$$
\]} \& \& 69° \& 70°

\hline 40 \& 46.206 \& 2.103 \& \& \& \& \& \& \& 69 \& 70°

\hline 50 \& 57.758 \& 2.088 \& 4.175 \& 6.263 \& 8.350 \& \& \& \& \&

\hline 6900 \& 69.309 \& 2.072 \& 4.144 \& 6.216 \& 8.288 \& 10.360 \& 12.431 \& 5

10 \& $$
\begin{array}{r}
0.001 \\
.006
\end{array}
$$ \& \[

$$
\begin{array}{r}
0.001 \\
.005
\end{array}
$$
\]

\hline 10 \& 11.553 \& 2.056 \& 4.112 \& 6.169 \& 8.225 \& 10.281 \& 12.337 \& 15 \& . 0102 \& . O 22

\hline 20 \& 23.106 \& 2.040 \& 4.081 \& 6.121 \& 8.162 \& 10.202 \& 12.242 \& 20 \& . 022 \& \multirow[t]{3}{*}{$$
\begin{aligned}
& .022 \\
& .034 \\
& .049
\end{aligned}
$$}

\hline 30 \& 34.659 \& 2.025 \& 4.049 \& 6.074 \& 8.099 \& 10.124 \& 12.148 \& 30 \& . 051 \&

\hline 40
50 \& 46.212
57.764 \& 2.009
I. 993 \& \multirow[t]{2}{*}{4.018
3.986} \& 6.027
5.980 \& 8.036
7.973 \& 10.045
9.966 \& 12.054
$\mathbf{I I} .959$ \& \& \&

\hline 50 \& 57.764 \& I. 993 \& \& 5.980 \& 7.973 \& 9.966 \& 11.959 \& \& \&

\hline 7000 \& 69.317 \& 1.977 \& 3.955 \& 5.932 \& 7.910 \& 9.888 \& 11.865 \& \& \&

\hline
\end{tabular}

Smithsonian Tables.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE бฐఫбで

[Derivation of table explained on p. liii-lvi.]

[^24]CO－ORDINATES FOR PROJECTION OF MAPS．SCALE | |
| :---: |
| $\frac{1}{\delta} \sigma \pi$ |

［Derivation of table explained on p ．liii－lvi．］

		ABSCISSAS OF DEVELOPED PARALEL．						ORDINATES OF DEVELOPED PARALLEL．		
		5^{\prime}		15^{\prime}		25^{\prime}	$30^{\prime \prime}$			
$77^{\circ} 00^{\prime}$	Inches．69.367	Itzches．1.301	Inches．2.602	Inches．3.903	Inches．5.204	Inches．6.505	Inches． 7.805	$\begin{array}{\|c} \text { 苛品 } \\ \text { 品苞 } \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	77°	78°
10	11.562	1.284	2.569	3.854	5．138	6.423	7.707			
20	23.124	1.268	2.536	3.804	5.072	6.34 I	7.609		Inches．	
30	34.686	1.252	2.503	3.755	5.006	6.258	7.510	5^{\prime}	0．001	0.001
40	46.248 57.810	1．235	2.470 2.438	3.706	4－941	6.176	7.4111	10	． 0.001	0.001 .003
50	57.810	1.219	2.438	3.656	4.875	6.094	7.313	15	． 008	． 008
7800	69.373	1.202	2.405	3.607	4．810	6.012	7．214	20	． 015	． 014
10	11.563	1.186	$2 \cdot 372$	$3 \cdot 558$	4.744	5.930	7.115	30	． 033	.031
20	23.126	1． 169	2.339	3.508	4.678	5.847	7.016			
30	34.689	1.153	2.306	$3 \cdot 459$	4.6 I 2	5.765	6.918			
40	46.252	I．I 36	2.273	3.410	4.546	5.683	6.819			
50	57.814	1.120	2.240	3.360	4.480	5.600	6.720			
7900	69.37	1．104	2.207	3.31 I	4	5.518	6.621		79°	80°
10	11.564	1.087	2.174	3．26I	$4 \cdot 348$	$5 \cdot 43$	6.522	5	0.001	0.001
20	23.127	1.070	2.141	3.211	4.282	$5 \cdot 352$	6.422	10	． 003	． 003
30	34.691	1.054	2.108	3.162	4.216	5.270	6.323	15	． 007	． 006
40	46.255	1.037	2.075	3．112	4.150	5.187	6.224	20	． 013	． OLI
50	57．818	1.021	2.042	3.062	4.083	5．104	6.125	25 30	.020 .028	． 018
8000	69.382	1.004	2.009	3.013	4.017	5.022	6.026			

Smithsonian Tablee．

Table 23.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{200 \% \delta \sigma^{\circ}}{}$
[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED Parallel for -											
		Io'longitude.		20^{\prime} longitude.		30^{\prime} longitude.		4° longitude.		50' longitude.		1° Iongitude.	
		x	y	x	y	x	y	x	y	x	y	\mathbf{x}	y
	$m m$.	mm	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
$0^{\circ} 00^{\prime}$	92.8	. 0	185.5	. 0	278.3	. 0	371.1	. 0	463.8	. 0	556.6	. 0
10	92.1	92.8	. 0	185.5	. 0	278.3	. 0	37 I .1	. 0	463.8	. 0	556.6	. 0
20	184.3	92.8	. 0	185.5	. 0	278.3	. 0	371.1	. 0	463.8	. 0	556.6	. 0
30	276.4	92.8	. 0	185.5	. 0	278.3	. 0	371.0	. 0	463.8	. 0	556.6	. 0
40	368.6	92.8	. 0	185.5	. 0	278.3	. 0	371.0	. 0	463.8	. 0	556.6	.
50	460.7	92.8	. 0	185.5	. 0	278.3	. 0	371.0	. 0	463.7	. 0	556.5	. 1
100		92.8	. 0	185.5	. 0	278.3	. 0	371.0	. 0	463.7	. 1	556.5	. 1
10	92.1	92.7	. 0	185.5	. 0	278.2	. 0	37 I .0	. 0	463.7	. 1	556.4	. 1
20	184.3	92.7	. 0	185.5	. 0	278.2	. 0	371.0	. 0	463.7	. 1	556.4	. 1
30	276.4	92.7	. 0	185.5	. 0	278.2	. 0	370.9	. 0	463.7	. 1	556.4	. 1
40	368.6	92.7	. 0	185.4	. 0	278.2	. 0	370.9	. 0	463.6	. 1	556.3	. 1
50	460.7	92.7	. 0	185.4	. 0	278.2	. 0	370.9	. 1	463.6	. 1	556.3	. 2
200	92.7	. 0	185.4	. 0	278.1	. 0	370.8	- 1	463.6	. 1	556.3	. 2
10	92.1	92.7	. 0	185.4	. 0	278.1	. 0	370.8	.	463.5	. 1	556.2	. 2
20	184.3	92.7	. 0	185.4	. 0	278.I	. 0	370.8	. 1	463.4	. 1	556.I	. 2
30	276.4	92.7	. 0	185.3	. 0	278.0	. 0	370.7	. 1	463.4	. 1	556.0	. 2
40	368.6	92.7	. 0	185.3	. 0	278.0	. 0	370.6	. 1	463.3	. 2	556.0	. 2
50	460.7	92.7	. 0	185.3	. 0	278.0	. 1	370.6	. I	463.2	.2	555.9	. 2
300	92.6	. 0	185.3	. 0	277.9	. 1	370.6	. 1	463.2	. 2	555.8	. 2
10	92.1	92.6	. 0	185.2	. 0	277.9	I	370.5	I	463.1	. 2	555.7	. 3
20	184.3	92.6	. 0	185.2	. 0	277.8	. 1	370.4	. 1	463.0	. 2	555.7	. 3
30	276.4	92.6	. 0	185.2	. 0	277.8	. 1	370.4	. 1	463.0	. 2	$555 \cdot 5$. 3
40	368.6	92.6	. 0	185.1	. 0	277.7	. 1	370.3	. 1	462.8	. 2	555.4	. 3
50	46 c .7	92.6	. 0	185.1	. 0	277.7	. 1	370.2	. 1	462.8	$\cdot 2$	$555 \cdot 4$. 3
400	92.5	. 0	185.1	. 0	277.6	. 1	370.2	.2	462.7	. 2	555.2	$\cdot 3$
10	92.1	92.5	. 0	185.0	. 0	277.6	. 1	370.1	. 2	462.6	.2	555.1	. 3
20	184.3	92.5	. 0	185.0	. 0	$277 \cdot 5$. 1	370.0	. 2	462.5	. 2	555.0	. 3
30	276.4	92.5	. 0	185.0	. 0	$277 \cdot 4$. 1	369.9	.2	462.4	. 2	554.9	. 3
40	368.6	92.5	. 0	184.9	. 0	277.4	. 1	369.8	.2	462.3	$\cdot 3$	554.8	. 4
50	460.7	92.4	. 0	184.9	. 0	277.3	. 1	369.8	. 2	462.2	- 3	554.6	. 4
500	-	92.4	. 0	184.8	. 0	$277 \cdot 3$. 1	369.7	.2	462.1	-3	554.5	. 4
10	92.2	92.4	. 0	184.8	. 1	277.2	.	369.6	. 2	462.0	- 3	554.3	. 4
20	184.3	92.4	. 0	184.7	1	277.1	. 1	369.5	. 2	46 I .8	. 3	554.2	. 4
30 40	276.4 368.6	92.3	. 0	184.7	. 1	277.0	. 1	369.4	.2	461.7	- 3	554.0	. 4
40	368.6	92.3	. 0	184.6	. 1	276.9	. 1	369.2	.2	461.6	- 3	553-9	. 5
50	460.7	92.3	. 0	184.6	. 1	276.9	. 1	369.2	. 2	461.4	. 3	553.7	. 5
600		92.3	. 0	184.5	. 1	276.8	. 1	369.0	. 2	461.3	-4	553.6	
10	92.2 I 84	92.2	. 0	184.5	. 1	276.7	. 1	368.9	. 2	461.2	. 4	553.4	. 5
20	184.3	92.2	. 0	184.4	. 1	276.6	.	368.8	. 2	461.0	. 4	553.2	. 5
30	276.4	92.2	. 0	184.3	-1	276.5	- 1	368.7	. 2	460.8	-4	553.0	. 5
40	368.6 460.7	92.1	. 0	184.3	. 1	276.4	. 1	368.6	. 2	460.7	. 4	552.8	. 6
50	460.7	92.1	. 0	184.2	. 1	276.3	. 1	368.4	. 2	460.6	- 4	552.7	. 6
700		92.1	. 0	184.2	$\cdot 1$	276.2	. 1	368.3	$\cdot 3$	460.4	- 4		. 6
10	92.2 184	92.0	. 0	184.1	. 1	276.1	. 1	368.2	. 3	460.2	. 4	552.2	. 6
20	184.3 276.4	92.0	. 0	184.0	. 1	276.0	. 1	368.0	- 3	460.0	. 4	552.1	. 6
30	276.4	92.0	. 0	184.0	- I	275.9	. 1	367.9	- 3	459.9	. 4	551.9	. 6
40 50	368.6 460.7	91.9 91.9	. 0		. 1	275.8	. 1	367.8	- 3	459.7	- 4	551.6	. 6
50	460.7	9 P .9	. 0	183.8	.I	275.7	. 1	367.6	$\cdot 3$	459.5	. 5	.551.4	. 7
800		91.9	. 0	183.7	. 1	275.6	. 2	$367 \cdot 5$	$\cdot 3$	459.4	$\cdot 5$	551.2	. 7

Table 23.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{200600}{}$.
[Derivation of table explained on pp. liii-]vi.]

		co-ordinates of developed parallel for -											
		${ }^{10}$ longitude.		20' longitude.		30 longitude.		40 ${ }^{\prime}$ longitude.		50 ${ }^{\prime}$ longitude.		${ }_{1}{ }^{\circ}$ longitude.	
		x	y	x	y	\times	y	x	y	x	y	\star	y
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	m.	mm.	mm
$8^{\circ} 00^{\prime}$		91.9	. 0	183.7	. 1	275.6	. 2	367.5	. 3	459.4	$\cdot 5$	551.2	. 7
10	9	91.8	. 0	183.7	.	275.5	. 2	367.3	$\cdot 3$	459.2	. 5	551.0	. 7
20	184.3	${ }_{9}^{91.8}$. 0	183.6	. 1	275.4	. 2	367.2	$\cdot 3$	459.0	. 5	550.7	. 7
30	276.5 368.6	91.8	. 0	183.5	.	275.2	.2	367.0	$\cdot 3$	458.8	. 5	550.5	. 7
40	368.6	91.7	. 0	183.4	.	275.1	. 2	366.8	$\cdot 3$	458.6	. 5	550.3	. 7
50	460.8	9 Pr 7	. 0	183.3	. 1	275.0	.2	366.7	$\cdot 3$	458.4	$\cdot 5$	550.0	. 7
900		91.6	. 0	183.3	. 1	274.9	. 2	366.5	-3	458.2	. 5	549.8	. 8
10	92	91.6	. 0	183.2	. 1	274.8	. 2	366.4	. 3	458.0	. 5	549.5	. 8
20	184.3	91.5	. 0	183.1	. 1	274.6	.2	366.2	$\cdot 3$	457.7	. 5	549.2	. 8
30 40	276.5 368.6	91.5 91.5	. 0	183.0 182.9	. 1	274.5 $274-4$. 2	366.0 365.8	. 4	457.5 457.3	. 5	549.0	. 8
50	460.8	91.4	. 0	182.8	. 1	274.2	. 2	365.6	. 4	457.0	. 6	548.5	. 8
1000		91.4	. 0	182.7	. 1	274.1	. 2	365.5	. 4	456.8	. 6	548.2	. 8
10	98.2	91.3	. 0	182.6	.	274.0	. 2	365.3	. 4	456.6	. 6	547.9	. 8
20	1843	91.3	. 0	182.5	. 1	273.8	. 2	365.1	-4	456.4	. 6	547.6	. 9
30	276.5	91.2	. 0	182.4	. 1	273.7	2	364.9	4	456.1	. 6	547.3	-9
50	460.8	91.1	. 0	182.2	. .1	273.4	. 2	364.5	. 4	455.6	. 6	546.7	. 9
1100		91.1	. 0	182.1	. 1	273.2	. 2	364.3	. 4	455.4	. 6	546.4	. 9
10	92.2	91.0	. 0	182.0	.	273.1	. 2	364.I	. 4	455.1	. 6	546.1	. 9
20	184.3	91.0	. 0	181.9	.	272.9	. 2	363.8	- 4	454.8	. 6	545.8	. 9
30	276.5	90.9	. 0	18 l 188	. 1	272.7	.2	363.6	. 4	454.6	7	545.5	. 9
40 50	368.7 460.8	90.9 90.8	. 0	181.7 181.6	. 1	272.6 272.4	. 2	363.4 363.2	. 4	$454 \cdot 3$. 7	545.2	1.0
1200		90.8	. 0	181.5	. 1	272.2	. 2	363.0	. 4	453.8	. 7	544.5	1.0
10	92.2	90.7	. 0	181.4	. 1	272.1	. 2	362.8	. 4	453.4	. 7	544.I	1.0
20	184.4	90.6	. 0	181.3	.	271.9	. 2	362.5	$\cdot 4$	453.2	. 7	543.8	1.0
30	276.5 368.7	90.6 90.5	. 0	181.1	.	271.7	$\cdot 3$	362.3	4	452.8	. 7	543.4	1.0
40 50	368.7 460.9	90.5 90.5	. 0	181.0 180.9	. 1	271.6 271.4	$\stackrel{-3}{ } \cdot$	362.1 361.8	. 4	452.6 452.3	. 7	5432.8	I. 0 I. I
1300		90.4	. 0	180.8	. 1	271.2	$\cdot 3$	361.6	. 5	452.0	. 7	542.4	I.I
10	92.2	90.3	. 0	180.7	. 1	271.0	. 3	361.4	. 5	451.7		542.0	I.I
20	184.4	90.3	. 0	180.6	.	270.8	. 3	361.1	. 5	451.4	. 8	541.7	I.I
30	276.6	90.2	. 0	180.4	.	270.6	$\cdot 3$	360.8	. 5	451.0	. 8	541.3	I.I
40	368.8	90.2	. 0	188.3	. 1	270.4	$\cdot 3$	360.6	- 5	450.8	. 8	540.9	I.I
50	461.0	90.1	. 0	180.2	.	270.3	$\cdot 3$	360.4	$\cdot 5$	450.4	. 8	540.5	I.I
1400		90.0	. 0	180.1	. 1	270.1	$\cdot 3$	360.1	. 5	450.2	. 8	540.2	I.1
10	92.2	90.0	. 0	179.9	. 1	269.9	$\cdot 3$	359.8	. 5	449.8	. 8	539.8	1.2
20	184.4 276.6	89.9 89.8 8	. 0	179.8	. 1	269.7	$\cdot 3$	359.6	. 5	449.5 44.2		5399.4	1.2 I. 2 12
40	276.6 368.8	889.8	. 0	179.7 179.5	. 1	269.5 269.3	$\cdot \cdot 3$	359.3	. 5	449.2	. 8	539.0	I. 2
50	461.0	89.7	. 0	179.4	. 1	269.1	$\cdot 3$	358.8	. 5	448.5	. 8	538.2	I. 2
1500		89.6	. 0	179.3	.	268.9	$\cdot 3$	358.5	. 5	448.2	. 8	537.8	I. 2
10	92.2	89.6	. 0	179.1	. 1	268.7	$\cdot 3$	358.2	. 5	447.8	. 8	537.4	I. 2
20	184.4	89.5	. 0	179.0	. 1	268.5	- 3	358.0	. 6	447.4	. 8	536.9 536.5	1.2 1.2
30 40	276.6 368.8	89.4 89.3	. 0	178.8 178.7	I	268.3 268.0	$\cdot \cdot 3$	357.7 357.4	. 6	447.1 446.7	. 9	536.5	1.2 1.3
50	461.0	89.3	. 0	178.5	. 1	267.8	$\cdot 3$	357.1	. 6	446.4	. 9	535.6	$1 \cdot 3$
1600		89.2	. 0	178.4	. 1	267.6	. 3	356.8	. 6	446.0	. 9	535.2	1.3

\%些要		CO-ORDINATES OF DEVELOPED PARALLEL FOR -											
		ro' longitude.		20' longitude.		30^{\prime} longitude.		40^{\prime} longitude.		50\% longitude.		$5^{\circ} \mathrm{longitude}$.	
		x	y	x	y	x	y	x	y	x	y	\times	y
	mm.	mm.	nim.	mm.	m	mm	mm.	mun.	mm.	mm	min.	mm.	mm
$16^{\circ} 00^{\prime}$	\cdots	89.2	. 0	178.4	. 1	267.6	- 3	356.8	. 6	446.0	. 9	535.2	1.3
0	92.2	89. 5	. 0	178.2	. 1	267.4	$\cdot 3$	356.5	. 6	445.6	. 9	534.7	I. 3
20	I 84.4	89.0	. 0	178.1	. 1	267.2	- 3	356.2	. 6	445.2	. 9	$534 \cdot 3$	1.3
30	276.6	89.0	. 0	177.9	. 1	266.9	- 3	355.9	. 6	444.8	-9	533.8	1.3
40	368.8	88.9	. 0	177.8	. 1	266.7	$\cdot 3$	355.6	. 6	444.4	. 9	$533 \cdot 3$	1.3
50	461.0	88.8	. 0	177.6	. 1	266.5	- 3	$355 \cdot 3$. 6	444. 1	. 9	532.9	1.4
1700	88.7	. 0	177.5	. 2	266.2	. 3	355.0	. 6	443.7	. 9	532.4	1.4
10	92.2	88.7	. 0	177.3	. 2	266.0	. 3	354.6	. 6	443.3	. 9	532.0	1.4
20	184.4	88.6	. 0	177.2	. 2	265.7	- 3	354.3	. 6	442.9	1.0	531.5	1.4
30	276.7	88.5	.o	177.0	. 2	265.5	$\cdot 3$	354.0	. 6	442.5	1.0	531.0	1.4
40	368.9	88.4	. 0	176.8	. 2	265.2	. 4	353.6	. 6	442.0	1.0	530.5	1.4
50	461.1	88.3	. 0	176.7	. 2	265.0	. 4	$353 \cdot 3$. 6	441.6	1.0	530.0	I. 4
1800	88.3	. 0	176.5	.2	264.8	. 4	353.0	. 6	441.2	1.0	529.5	1.4
10	92.2	88.2	. 0	176.3	. 2	264.5	. 4	352.6	. 6	440.8	1.0	529.0	1.4
20	184.5	88.1	. 0	176.2	. 2	264.2	. 4	352.3	. 6	440.4	1.0	528.5	1.5
30	276.7	88.0	. 0	176.0	. 2	264.0	- 4	352.0	. 6	440.0	I. 0	528.0	1.5
40	368.9	87.9	. 0	175.8	. 2	263.7	. 4	351.6	. 6	439.6	1.0	527.5	1. 5
50	461.2	87.8	. 0	175.6	. 2	263.5	. 4	351.3	. 7	439.1	1.0	526.9	1. 5
1900		87.7	. 0	175.5	. 2	263.2	$\cdot 4$	351.0	.7	438.7	1.0	526.4	1.5
10	92.2	87.6	. 0	175.3	.2	263.0	. 4	350.6	. 7	438.2	1.0	525.9	1.5
20	184.5	87.6	. 0	175.1	$\cdot 2$	262.7	-4	350.2	. 7	437.8	1.0	525.4	1.5
30	276.7	87.5	. 0	174.9	.2	262.4	- 4	$349 \cdot 9$. 7	437.4	1.I	524.8	1.5
40	369.0	87.4	. 0	174.8	. 2	262.1	. 4	349.5	. 7	436.9	I. 1	524.3	1. 5
50	461.2	87.3	. 0	174.6	. 2	261.9	. 4	349.2	$\cdot 7$	436.4	I. I	523.7	1.6
2000	87.2	. 0	174.4	. 2	261.6	. 4	348.8	$\cdot 7$	436.0	1.1	523.2	1.6
10	92.2	87.1	. 0	174.2	. 2	261.3	. 4	348.4	. 7	435.6	1.1	522.7	1.6
20	184.5	87.0	. 0	174.0	. 2	261.0	. 4	348.0	. 7	435.0	I.I	522.1	1.6
30	276.8	86.9	. 0	173.8	. 2	260.8	. 4	347.7	. 7	434.6	I.I	521.5	I. 6
40	369.0	86.8	. 0	173.7	.2	260.5	- 4	$347 \cdot 3$. 7	434.2	1.1	521.0	1.6
50	461.2	86.7	. 0	173.5	. 2	260.2	. 4	346.9	. 7	433.6	1.1	520.4	I. 6
2100		86.6	. 0	$173 \cdot 3$. 2	259.9	. 4	346.6	$\cdot 7$	433.2	1.1	519.8	1. 6
10	92.3	86.5	. 0	173.1	. 2	259.6	- 4	346.2	. 7	432.7	1.1	519.2	1.6
20	184.5	86.4	. 0	172.9	. 2	259.3	. 4	345.8	. 7	432.2	I.1	518.6	1.6
30	276.8	86.3	. 0	172.7	. 2	259.0	- 4	345.4	. 7	431.7	1.2	518.0	1.7
40	369.0	86.2	. 0	172.5	. 2	258.8	- 4	345.0	. 7	43 F .2	1.2	517.5	1.7
50	461.3	86.1	. 0	172.3	. 2	258.4	. 4	344.6	. 7	430.8	1.2	516.9	1.7
2200	86.0	. 0	172.1	. 2	258.2	- 4	344.2	. 7	430.2	I. 2	516.3	1.7
10	92.3	85.9	. 0	171.9	.2	257.8	- 4	343.8	. 8	429.8	1.2	515.7	1.7
20	184.5	85.8	. 0	171.7	. 2	257.6	-4	343.4	. 8	429.2	I. 2	515.1	1.7
30	276.8	85.7	. 0	171.5	. 2	257.2	- 4	343.0	. 8	428.8	1.2	514.5	1.7
40	369.1	85.6	. 0	171.3	. 2	256.9	- 4	342.6	. 8	423.2	1.2	513.8	1.7
50	461.4	85.5	. 0	171.1	. 2	256.6	. 4	342.2	. 8	427.7	1.2	513.2	1.7
2300	85.4	. 0	170.9	. 2	256.3	$\cdot 4$	341.8	. 8	427.2	1.2	512.6	1.7
10	92.3	85.3	. 0	170.7	. 2	255.0	- 4	341.3	. 8	426.6	1.2	512.0	1.8
20	184.6	85.2	. 0	170.4	. 2	255.7	- 4	340.9	. 8	426.1	1.2	511.3	1.8
30	276.8	85.1	. 0	170.2	.2	255.3	. 4	340.4	. 8	425.6	1.2	510.7	I. 8
40	369.1	85.0	. 0	170.0	. 2	255.0	-4	340.0	. 8	425.0	1.2	510 r	I. 8
50	461.4	84.9	. 0	169.8	. 2	254.7	. 4	339.6	. 8	424.5	1.2	509.4	1.8
2400		84.8	. 0	169.6	. 2	$254 \cdot 4$. 4	339.2	. 8	424.0	1.3	508.7	Ј. 8

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $20 \frac{1}{200 б 0 . ~}$
[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -											
		ro' longitude.		20' longitude.		30^{\prime} longitude.		40' longitude.		50' longitude.		Σ° longitude.	
		x	y	x	y	x	y	x	y	x	y	x	y
	mm.	n	mm.	mm.	mon.	mm.	m	mm.	mm.	mm.	mm	mm.	mm .
$24^{\circ} 00^{\prime}$		84.8	. 0	169.6	. 2	254.4	-4	339.2	. 8	424.0	1.3	508.7	1.8
10	92.3	84.7	. 0	169.4	. 2	254.0	. 5	338.7	. 8	423.4	I. 3	508.1	1.8
20	184.6	84.6	. 0	169.1	. 2	253.7	. 5	338.3	. 8	422.8	1.3	507.4	1.8
30	276.9	84.5	. 0	168.9	. 2	253.4	. 5	337.8	. 8	422.3	I. 3	506.8	1.8
40	369.2	84.4	. 0	168.7	.2	253.0	- 5	337.4	. 8	42 I .8	I. 3	506.I	I. 8
50	461.5	84.2	. 0	168.5	. 2	252.7	- 5	337.0	. 8	421.2	1.3	505.4	1.9
2500	84.1	. 1	168.3	. 2	252.4	- 5	336.5	. 8	420.6	I. 3	504.8	I. 9
10	92.3	84.0	. 1	168.0	.2	252.0	- 5	336.0	. 8	420.0	I. 3	504.I	1.9
20	184.6	83.9	. 1	167.8	. 2	251.7	- 5	335.6	. 8	419.5	1.3	503.4	1.9
30	276.9	83.8	. 1	167.6	. 2	251.3	- 5	335.I	. 8	418.9	1.3	502.7	1.9
40	369.2	83.7	. 1.	$167 \cdot 3$. 2	251.0	. 5	334.6	. 8	418.3	I. 3	502.0	1.9
50	46 I .6	83.6	. 1	167.1	. 2	250.6	. 5	334.2	. 8	417.8	1.3	501.3	1.9
2600		83.4	. 1	166.9	. 2	250.3	- 5	333.7	. 9	417.2	1.3	500.6	1.9
10	92.3	83.3	. 1	166.6	. 2	249.9	. 5	333.2	$\cdot 9$	416.6	1.3	499.9	1.9
20	184.6	83.2	. 1	166.4	. 2	249.6	. 5	332.8	. 9	416.0	1.3	499.1	1.9
30	277.0	83.1	. 1	166.1	. 2	249.2	. 5	332.3	. 9	415.4	I. 3	498.4	1.9
40	369.3	82.9	. 1	165.9	. 2	248.8	- 5	331.8	. 9	414.8	I. 4	497.7	2.0
50	46 I .6	82.8	. 1	165.7	$\cdot 2$	248.5	. 5	331.3	. 9	414.2	1.4	497.0	2.0
2700	82.7	. 1	165.4	. 2	248.1	- 5	330.8	-9	413.6	1.4	496.3	2.0
10	92.3	82.6	. 1	165.2	. 2	247.8	. 5	330.4	. 9	413.0	I. 4	495.5	2.0
20	184.7	82.5	.1	164.9	. 2	$247 \cdot 4$. 5	329.8	. 9	412.3	I. 4	$49+8$	2.0
30	277.0	82.3	. 1	164.7	. 2	247.0	- 5	329.4	$\cdot 9$	411.7	I. 4	494.0	2.0
40	369.3	82.2	. 1	164.4	. 2	246.7	. 5	328.9	. 9	411.1	1.4	493.3	2.0
50	461.6	82.1	.1	164.2	. 2	246.3	. 5	328.4	. 9	410.4	1.4	492.5	2.0
2800		82.0	. 1	163.9	. 2	$245 \cdot 9$	- 5	327.9	. 9	409.8	I. 4	49 I .8	2.0
10	92.4	81. 8	. 1	163.7	. 2	245.5	. 5	327.4	. 9	409.2	1.4	491.0	2.0
20	184.7	81.7	$\cdot 1$	163.4	. 2	245.1	. 5	326.8	. 9	408.6	1.4	490.3	2.0
30	277.0	81.6	. 1	163.2	$\stackrel{2}{2}$	244.7	. 5	326.3	. 9	407.9	I. 4	489.5	2.0
40	369.4	81.5	. 1	162.9	. 2	244.4	. 5	325.8	. 9	407.3	I. 4	488.8	2.0
50	461.8	81. 3	$\cdot \mathrm{I}$	162.7	. 2	244.0	. 5	325.3	$\cdot 9$	406.6	1.4	488.0	2.1
2900		81.2	. 1	162.4	. 2	243.6	- 5	324.8	. 9	406.0	1.4	487.2	2.1
10	92.4	8 I .1	. 1	162.1	. 2	243.2	. 5	324.3	. 9	405.4	I. 4	486.4	2.1
20	184.7	80.9	. 1	161.9	.2	242.8	. 5	323.8	. 9	404.7	I. 4	485.6	2.1
30	277.1	80.8	. 1	16 r .6	.2	242.4	. 5	323.2	. 9	404.0	I. 4	484.8	2.1
40	369.4	80.7	. 1	161.3	. 2	242.0	. 5	322.7	. 9	403.4	I. 4	484.0	2.1
50	461.8	80.5	. 1	161.t	. 2	241.6	. 5	322.2	. 9	402.7	1.5	483.2	2.1
3000		80.4	. 1	160.8	. 2	241.2	- 5	321.6	$\cdot 9$	402.0	I. 5	482.5	2.1
10		80.3	. 1	160.5	. 2	240.8	. 5	32 I .1	. 9	40 I .4	1.5	481.6	2.1
20	184.8	$8 \mathrm{8o.I}$. 1	160.3	. 2	2.40 .4	. 5	320.6	. 9	400.7	1. 5	480.8	2.1
30	277.1	80.0	. 1	160.	. 2	240.0	. 5	320.0	. 9	400.0	I. 5	480.0	2.1
40	369.5	79.9	. 1	159.7	. 2	239.6	. 5	319.4	. 9	$399 \cdot 3$	1.5	479.2	2.1
50	461.9	79.7	. 1	I 59.5	. 2	239.2	. 5	318.9	$\cdot 9$	398.6	1.5	478.4	2.1
3 I 00		79.6	. 1	159.2	. 2	238.8	- 5	318.4	1.0	398.0	I. 5	477.5	2.1
10	92.4	79.4	. 1	158.9	.2	238.4	. 5	317.8	1.0	397.2	I. 5	476.7	2.1
20	184.8	79.3	. 1	158.6	. 2	237.9	. 5	317.2	1.0	396.6	1.5	475.9	2.2
30	277.2	79.2	. 1	158.3	. 2	237.5	- 5	316.7	1.0	395.8	1.5	475.0	2.2
40	369.6	79.0	.	158.1	${ }^{2}$	237.1	. 5	316.1	1.0	395-2	1.5	474.2	2.2
50	462.0	78.9	. 1	157.8	. 2	236.7	. 5	315.6	1.0	394.4	1.5	$473 \cdot 3$	2.2
3200		$7^{8.8}$. 1	157.5	. 2	236.2	-5	315.0	1.0	393.8	I. 5	472.5	2.2

[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED Parallel for -											
		ro' longitude.		20' longitude.		3o' longitude.		40 longitude.		50' longitude.		$\mathrm{s}^{0} \mathrm{longitude}$.	
		x	y	x	y	x	y	x	y	x	y	\times	y
	mm.	mm.	m	mom	mm .	mm.	m	mm.	mm.	mm.	mm.	m	mm.
$32^{\circ} 00^{\prime}$		78.8	- 1	157.5	. 2	236.2	. 5	315.0	1.0	393.8	1.5	472.5	2.2
10	92.4	78.6	. 1	ז 57.2	. 2	235.8	. 5	314.4	1.0	393.0	I. 5	47 r .6	2.2
20	184.8	78.5	. 1	156.9	.2	235.4	. 5	313.8	1.0	392.3	I. 5	470.8	2.2
30	277.2	78.3	. 1	156.6	. 2	235.0	. 5	313.3	1.0	391.6	1. 5	469.9	2.2
40	369.6	78.2	. 1	I 56.3	${ }^{2}$	234.5	. 5	312.7	1.0	390.8	I. 5	469.0	2.2
50	462.0	78.0	. 1	156.0	. 2	234.1	. 5	312.5	1.0	390. 1	1.5	468.1	2.2
3300		77.9	. 1	155.8	. 2	233.6	. 6	311.5	1.0	389.4	I. 5	467.3	2.2
10	92.4	77.7	. 1	I 55.5	. 2	233.2	. 6	310.9	1.0	388.6	1.5	466.4	2.2
20	184.8	77.6	.I	1 55.2	. 2	232.7	. 6	310.3	1.0	387.9	1.5	465.5	2.2
30	$277 \cdot 3$	77.4	. 1	154.9	. 2	232.3	. 6	309.7	1.0	387.2	1. 6	464.6	2.2
40	369.7	77.3	. 1	I 54.6	. 2	231.9	. 6	309.2	1.0	386.4	I. 6	463.7	2.2
50	462.1	77.1	. 1	I54.3	. 2	231.4	. 6	308.6	1.0	$3^{8} 5 \cdot 7$	I. 6	462.8	2.2
3400		77.0	. 1	154.0	$\cdot 3$	231.0	. 6	308.0	1.0	384.9	I. 6	461.9	2.3
10	92.4	76.8	. 1	153.7	-3	230.5	. 6	307.4	1.0	384.2	1.6	461.0	2.3
20	184.9	76.7	. 1	153.4	$\cdot 3$	230.0	. 6	306.7	I.O	383.4	I. 6	460.1	2.3
30	$277 \cdot 3$	76.5	. 1	153.1	$\cdot 3$	229.6	. 6	306.1	I. 0	382.6	1. 6	459.2	2.3
40	369.7	76.4	. 1	152.8	- 3	229.1	. 6	305.5	I. 0	38 r .9	1.6	458.3	2.3
50	$462 . \mathrm{I}$	76.2	. 1	152.4	$\cdot 3$	228.7	. 6	304.9	1.0	$381 . \mathrm{I}$	I. 6	$457 \cdot 3$	2.3
3500		76.1	. 1	152.1	. 3	228.2	. 6	304.3	1.0	380.4	1.6	456.4	2.3
10	92.4	75.9	. 1	151.8	. 3	227.8	. 6	303.7	1.0	379.6	1.6	455.5	2.3
20	184.9	75.8	. 1	151.5	$\cdot 3$	227.3	. 6	303.0	I. 0	378.8	1.6	454.6	2.3
30	277.4	75.6	. 1	151.2	. 3	226.8	. 6	302.4	1.0	378.0	1.6	453.6	2.3
40	369.8	75.4	. 1	150.9	$\cdot 3$	226.4	. 6	301.8	I. 0	377.2	1.6	452.7	2.3
50	462.2	75.3	. 1	150.6	$\cdot 3$	225.9	. 6	301.2	1.0	376.5	I. 6	451.8	2.3
36 co		75.1	. 1	150.3	-3	225.4	. 6	300.6	1.0	375.7	1.6	450.8	2.3
10	92.5	75.0	. 1	150.0	- 3	224.9	. 6	299.9	1.0	374.9	1.6	449.9	2.3
20	184.9	74.8	.	149.6	$\cdot 3$	224.5	. 6	299.3	1.0	374.1	r. 6	448.9	2.3
30	277.4	74.7	. 1	I 49.3	- 3	224.0	. 6	298.6	1.0	373.3	1.6	448.0	2.3
40	369.8	74.5	. 1	I 49.0	$\cdot 3$	223.5	. 6	298.0	1.0	372.5	ェ. 6	447.0	2.3
50	462.3	74.3	-1	148.7	-3	223.0	. 6	297.4	1.0	371.7	I. 6	446.0	2.3
3700	74.2	. 1	148.4	-3	222.5	. 6	296.7	1.0	370.9	I. 6	445. 1	2.3
10	92.5	74.0	. 1	148.0	- 3	222.1	. 6	296.1	1.0	370.1	I. 6	444.I	2.3
20	185.0	73.8	. 1	147.7	- 3	221.6	. 6	295.4	1.0	369.2	I. 6	443. 1	2.3
30	$277 \cdot 4$	73.7	. 1	147.4	$\cdot 3$	221.1	. 6	294.8	1.0	368.4	I. 6	442.1	2.3
40	369.9	73.5	. 1	147.1	$\cdot 3$	220.6	. 6	294.1	1.0	367.6	I. 6	44 I .2	2.4
50	462.4	73.4	. 1	146.7	- 3	220.1	. 6	293.4	1.0	366.8	I. 6	440.2	2.4
$3^{8} 00$		73.2	. 1	146.4	-3	219.6	. 6	292.8	1.0	366.0	1.6	439.2	2.4
10	92.5	73.0	. 1	I46.I	- 3	219.1	. 6	292.1	1.0	365.1	1.6	438.2	2.4
20	185.0	72.9	. 1	145.7	- 3	218.6	. 6	297.4	1.1	364.3	I. 6	437.2	2.4
30	277.5	72.7	. 1	145.4	-3	218.1	. 6	290.8	I.I	363.5	I. 6	436.2	2.4
40	370.0	72.5	. 1	I45.I	- 3	217.6	. 6	290.1	1.1	362.6	I. 6	435.2	2.4
50	462.5	72.4	. 1	144.7	-3	217.1	. 6	289.4	1.1	361.8	1.6	434.2	2.4
3900	72.2	. 1	144.4	$\cdot 3$	216.6	. 6	288.8	1.1	361.0	1.7		
10	92.5	72.0	. 1	144.0	- 3	216.1	. 6	288.1	1.1	360.1	1.7	432.1	2.4
20	185.0	71.8	. 1	143.7	- 3	215.6	. 6	287.4	1.1	359.2	1.7	431.1	2.4
30 40	277.5 370.0	71.7 71.5	. I	143.4	- 3	215.0		286.7	1.1	358.4	1.7	430.1	2.4
40 50	370.0 462.6	71.5 71.3	. I	143.0	- 3	214.5	. 6	286.0	I.I	357.5	1.7	429.0	2.4
50	462.6	71.3	. 1	142.7	$\cdot 3$	214.0	. 6	285.3	I.I	356.6	1.7	428.0	2.4
4000		71.2	. 1	142.3	$\cdot 3$	213.5	. 6	284.6	I.I	355.8	1.7	427.0	2.4

[Derivation of table explained on pp. liii-lvi.]

茄		CO-ORDINATES OF DEVELOPED Parallel for-											
		ro' longitude.		20' longitude.		30 longitude.		40' longitude.		50\% longitude.		1^{0} longitude.	
		x	y	x	y	x	y	x	y	x	y	x	y
	mm.	mm	m.	mm.	m.	mim.	mm.	mm.	m.	mm.	mm.	mm.	$m m$
$40^{\circ} 00^{\prime}$	-	71.2	. 1	142.3	$\cdot 3$	213.5	. 6	284.6	1.1	355.8	I. 7	427.0	2.4
10	92.5	71.0	. 1	142.0	- 3	212.9	. 6	283.9	1.1	354.9	I. 7	425.9	2.4
20	$185 . \mathrm{I}$	70.8	. 1	141.6	- 3	212.4	. 6	283.2	1.1	354.0	1.7	424.9	2.4
30	277.6	70.6	. 1	141.3	- 3	211.9	. 6	282.6	I.I	353.2	1.7	423.8	2.4
40	370.1	70.5	. 1	140.9	- 3	211.4	. 6	281.8	I.I	352.3	1. 7	422.8	2.4
50	462.6	70.3	. 1	140.6	- 3	210.8	. 6	281.1	I.I	351.4	1.7	421.7	2.4
4100	\cdots	70.1	. 1	140.2	-3	210.3	. 6	280.4	1.1	350.6	1.7	420.7	2.4
10	92.5	69.9	. 1	139.9	- 3	209.8	. 6	279.7	I. 1	349.6	I. 7	419.6	2.4
20	185.1	69.8	. 1	139.5	- 3	209.2	. 6	279.0	I.I	348.8	1.7	418.5	2.4
30	277.6	69.6	. 1	139.2	- 3	208.7	. 6	278.3	I. 1	347.9	1.7	417.5	2.4
40	370.2	69.4	. 1	138.8	$\cdot 3$	208.2	. 6	277.6	I. 1	347.0	I. 7	416.4	2.4
50	462.7	69.2	. 1	138.4	. 3	207.7	. 6	276.9	I.I	346.1	I. 7	415.3	2.4
4200	-	69.0	. 1	138.1	$\cdot 3$	207.1	. 6	276.2	I.I.	345.2	1.7	414.2	2.4
10	92.6	68.9	. 1	137.7	$\cdot 3$	206.6	. 6	275.4	I.I	344.3	1.7	413.2	2.4
20	185.1	68.7	. 1	137.4	$\cdot 3$	206.0	. 6	274.7	I. 1	$343 \cdot 4$	1.7	412.1	2.4
30	277.7	68.5	. 1	137.0	- 3	205.5	. 6	274.0	1.I	342.4	1.7	410.9	2.4
40	370.2	68.3	. 1	I 36.6	- 3	204.9	. 6	273.2	I.I	341.5	1.7	409.9	2.4
50	462.8	68.1	. 1	136.3	$\cdot 3$	204.4	. 6	272.5	I.I	340.6	1.7	408.8	2.4
4300	68.0	. 1	I35.9	$\cdot 3$	203.8	. 6	271.8	I. 1	339.8	1.7	407.7	2.4
10	92.6	67.8	. 1	135.5	- 3	203.3	. 6	271.0	I.I	338.8	1.7	406.6	2.4
20	- 185.2	67.6	. 1	135.2	$\cdot 3$	202.7	. 6	270.3	I.I	337.9	1.7	405.5	2.4
30	277.7	67.4	. 1	${ }^{1} 34.8$	- 3	202.2	. 6	269.6	I.I	337.0	1.7	404.4	2.4
40	370.3	67.2	. 1	${ }^{1} 34.4$	- 3	201.6	. 6	268.8	I. 1	336.0	1.7	$403 \cdot 3$	2.4
50	462.9	67.0	. 1	I 34.0	$\cdot 3$	201.1	. 6	268.1	I.I	335.I	1.7	402.1	2.4
4400	\cdots	66.8	. 1	133.7	$\cdot 3$	200.5	. 6	267.4	1.1	334.2	1.7	401.0	2.4
10	92.6	66.6	. 1	133.3	$\cdot 3$	200.0	. 6	266.6	1.1	33332	1.7	399.9	2.4
20	185.2	66.5	I	${ }_{1} 132.9$	- 3	199.4	. 6	265.8	I.I	332.3	1.7	398.8	2.4
30	277.8	66.3	.	I 32.6	- 3	198.8	. 6	265.1	I.I	331.4	1.7	397.7	2.4
40	370.4	66.1	. 1	132.2	- 3	198.3	. 6	264.4	1.1	330.4	1.7	396.5	2.4
50	463.0	65.9	-	131.8	$\cdot 3$	197.7	. 6	263.6	1.1	329.5	1.7	$395 \cdot 4$	2.4
4500		65.7	. 1	131.4	. 3	197.1	. 6	262.8	1.1	328.6	1.7	394.3	2.4
10	92.6	65.5	. 1	135.0	$\cdot 3$	196.6	. 6	262.1	1.1	327.6	1.7	393.1	2.4
20	185.2	65.3	. 1	130.6	- 3	196.0	. 6	261.3	1.1	326.6	1.7	391.9	2.4
30	277.8	65.1	. 1	130.3	- 3	195.4	. 6	260.5	1.1	325.6	I. 7	390.8	2.4
40	370.4 .	64.9	. 1	129.9	$\cdot 3$	194.8	. 6	259.8	1.1	324.7	1.7	388.6	2.4
50	463.0	64.7	. 1	129.5	$\cdot 3$	194.2	. 6	259.0	1.1	323.7	1.7	388.4	2.4
4600		64.6	. 1	129.1	$\cdot 3$	193.6	. 6	258.2	I.I	322.8	1. 7	387.3	2.4
10	92.6	64.4	. 1	128.7	. 3	193.1	. 6	257.4	I. 1	321.8	1.7	386.2	2.4
20	185.3	64.2	. 1	128.3	$\cdot 3$	192.5	. 6	256.6	1.1	320.8	1.7	385.0	2.4
30	277.9	64.0	$\cdot 1$	127.9	$\cdot 3$	191.9	. 6	255.9	1.1	31.8	1.7	383.8	2.4
40	370.5	63.8	. 1	127.6	. 3	191.3	. 6	255.1	I.I	318.9	1.7	382.7	2.4
50	463.1	63.6	. 1	127.2	$\cdot 3$	190.7	. 6	254.3	I.I	317.9	1.7	38 I .5	2.4
4700		63.4	. 1	126.8	$\cdot 3$	190.1	. 6	253.5	I.I	316.9	1.7	380.3	2.4
10	92.6	63.2	. 1	126.4	. 3	189.5	. 6	252.7	1.1	315.9	1.7	379.1	2.4
20	185.3	63.0	. 1	126.0	- 3	188.9	. 6	251.9	I.I	314.9	1.7	377.9	2.4
30	277.9	62.8	. 1	125.6	- 3	188.3	. 6	251.1	I.I	313.9	1.7	376.7	2.4
40	370.6	62.6	. 1	125.2	- 3	187.8	. 6	250.4	1.1	313.0	1.7	375.5	2.4
50	463.2	62.4	. 1	I 24.8	$\cdot 3$	187.2	. 6	249.6	1.1	312.0	1.7	374.3	2.4
4800		62.2	. 1	124.4	$\cdot 3$	186.6	. 6	248.8	I.I	311.0	1.7	373.1	2.4

Table 23.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $200{ }^{2}$
[Derivation of table explained on pp. liii-ivi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR-											
		ıod longitude.		20l longitude.		$3{ }^{0}$ longitude.		40' longitude.		50' longitude.		x° longitude.	
		\mathbf{x}	y	\mathbf{x}	y	\mathbf{x}	y	x	y	x	y	x	y
	mm	m	mm.	m.	m	mim.	mmb.	mm.	mm.	m.	mm.	mms.	ntm.
$4^{\circ} 00^{\prime}$		62.2	. 1	124.4	$\cdot 3$	186.6	. 6	248.8	1.1	311.0	1.7	373.1	2.4
10	92.7	62.0	. 1	124.0	$\cdot 3$	186.0	. 6	248.0	I.I	310.0	1.7	371.9	2.4
0	185.3	6 I .8	. 1	123.6	$\cdot 3$	185.4	. 6	247.2	I. 1	309.0	1.7	370.7	2.4
30	278.0	61.6	. 1	123.2	$\cdot 3$	184.7	. 6	246.3	I.I	307.9	1.7	369.5	2.4
40	370.6	61.4	. 1	122.8	- 3	184.1	. 6	245.5	I.I	306.9	1.7	368.3	2.4
50	463.3	61.2	. 1	122.4	. 3	183.5	. 6	244.7	1.1	305.9	1.7	367.1	2.4
4900	,	61.0	$\cdot \mathrm{I}$	122.0	-3	182.9	. 6	243.9	I.I	304.9	1.7	365.9	2.4
	92.7	60.8	. 1	121.6	$\cdot 3$	182.3	. 6	243.1	I. 1	303.9	1.7	364.7	2.4
20	185.4	60.6	. 1	12	- 3	181.7	. 6	242.3	1.1	302.8	1.7	363.4	2.4
30	278.0	60.4	. 1	120.7	. 3	18 I .1	. 6	24 I .4	I.I	301.8	1.7	362.2	2.4
40	370.7	60.2	. 1	120.3	$\cdot 3$	180. 5	. 6	240.6	1.1	300.8	I. 7	361.0	2.4
50	463.4	60.0	. 1	119.9	$\cdot 3$	179.9	. 6	239.8	1.1	299.8	1.7	359.8	2.4
5000	927	59.8	. 1	119.5	$\cdot 3$	179.2	. 6	239.0	I.I	298.8	1.7	358.5	2.4
10	92.7	59.5	1.	119.1	. 3	178.6	. 6	238.2	I.I	297.7	1.7	357.2	2.4
20	185.4	59.3	. 1	118.7	- 3	178.0	. 6	237.3	I. 1	2966	1.7	356.0	2.4
30	278.1	59.1	. 1	118.2	- 3	177.4	. 6	236.5	I. 1	295.6	1.7	354.7	2.4
40	370.8 463.4	58.9	. 1	117.8	- 3	176.8	. 6	235.7	I, I	294.6	1.7	353.5	2.4
50	463.4	58.7	. 1	117.4	$\cdot 3$	176.1	. 6	234.8	I.I	293.6	1.7	352.3	2.4
5100	92	58.5	$\cdot \underline{1}$	117.0	$\cdot 3$	175.5	. 6	234.0	I.I	292.5	1.7	351.0	2.4
10	92.7	58.3	. 1	116.6	$\cdot 3$	174.9	. 6	233.2	I. 1	291.4	1.6	349.7	2.4
20	185.4	58.1	. 1	116.2	-3	174.2	. 6	232.3	1.1	290.4	1.6	348.5	2.4
30	278.1	57.9	. 1	115.7	- 3	173.6	. 6	231.5	1.1	289.4	I. 6	347.2	2.4
40	370.8	57.6	. 1	115	$\cdot 3$	173.0	. 6	230.6	1.1	288.2	I. 6	345.9	2.4
50	463.6	57.4	. 1	114.9	$\cdot 3$	172.3	. 6	229.8	1.1	287.2	1.6	344.6	2.4
5200	2	57.2	-1	114.5	$\cdot 3$	171.7	. 6	228.9	1.0	286.2	I. 6	$343 \cdot 4$	2.4
10	92.7	57.0	. 1	114.0	- 3	171.1	. 6	228.1	1.0	285.1	1.6	342.1	2.4
20	185.4	56.8	. 1	113.6	. 3	170.4	. 6	227.2	1.0	284.0	1.6	340.8	2.4
30	278.2	56.6	. 1	113.2	$\cdot 3$	169.8	. 6	226.4	1.0	283.0	1.6	339.5	2.4 2.3
40	370.9 463.6	56.4 56.2	. 1	112.8	$\cdot 3$	169.1	. 6	225.5	1.0	281.9	1.6	338.3	2.3
50	463.6	56.2	. 1	112.3	$\cdot 3$	168.5	. 6	224.6	I. 0	280.8	1.6	337.0	2.3
5300	……	56.0	. 1	111.9	-3	167.9	. 6	223.8	1.0	279.8	1.6		
10	92.7	55.7	. 1	111.5	$\cdot 3$	167.2	. 6	222.9	1.0	278.6	1.6	$335 \cdot 7$ 334.4	2.3
20	185.5	55.5	I	111.0	$\cdot 3$	166.6	. 6	222.1	t. 0	277.6	1.6	333. 1	2.3
30 40	278.2 371.0	55.3 55.1	. 1	110.6	$\cdot 3$	165.9	. 6	221.2	1.0	276.5	1.6	331. 8	2.3
40 50	371.0	55.1	. 1	110.2	- 3	165.2	. 6	220.3	1.0	275.4	1.6	330.5	2.3
50	463.7	54.9	.I	109.7	$\cdot 3$	164.6	. 6	219.5	1.0	274.4	1.6	329.2	2.3
5400		54.6	. 1	109.3	$\cdot 3$	164.0	. 6	218.6	1.0	273.2	1.6	327.9	2.3
10	92.8	54.4	I	108.9	- 3	163.3	. 6	217.7	1.0	272.1	1.6	326.6	2.3
20	185.5	54.2	. 1	108.4	$\cdot 3$	162.6	. 6	216.8	1.0	271.0	1.6	325.3	2.3
30	278.3	54.0	.I	108.0	$\cdot 3$	162.0	. 6	216.0	1.0	269.9	1.6	323.9	2.3
40	371.0 463.8	53.8	. 1	107.5	$\cdot 3$	161.3	. 6	215.1	1.0	268.8	1.6	322.6	2.3
50	463.8	53.6	. 1	107.1	- 3	160.6	. 6	214.2	1.0	267.7	1. 6	321.3	2.3
5500		53.3	. 1	106.7	$\cdot 3$	160.0	. 6	213.3	1.0	266.6	I. 6	320.0	
10 20	92.8 185	53.1	. 1	106.2	$\cdot 3$	159.3	. 6	212.4	1.0	265.6	1.6	318.7	2.3 2.3
20	185.5	52.9 52.7	$\cdot \mathrm{I}$	105.8	$\cdot 3$	158.7	. 6	211.6	1.0	264.4	ז. 6	317.3	2.3
30 40	278.3 371.1	52.7 52.4	. 1	105.3	- 3	158.0 157.3	. 6	210.7	1.0	263.4	1.6	316.0	2.3
50	463.8	52.4 52.2	. 1	104.9 104.4	$\cdot \cdot 3$	157.3 156.7	. 6	209.8 208.9	I. 1.0	262.2	1.6	314.6	2.3
5600		52.0	. 1	104.0	. 2	I 56.0	. 6	208.0	1.0	261.1 260.0	1.6	313.3 312.0	2.3 2.3

[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -											
		to longitude.		20^{\prime} longitude.		30^{\prime} longitude.		40 ${ }^{\prime}$ longitude.		50 longitude.		I° longitude.	
		x	y	x	y	x	y	\mathbf{x}	y	x	y	x	y
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	nn	mm.	mm.
$5^{6} 00{ }^{\prime}$		52.0	. 1	104.0	. 2	156.0	. 6	208.0	1.0	260.0	1.6	312.0	2.3
10	92.8	51.8	. 1	103.6	. 2	I 55.3	. 6	207.1	1.0	258.9	1.6	310.7	2.3
20	185.6	51.6	. 1	103.1	. 2	154.6	. 6	206.2	1.0	257.8	I. 6	309.3	2.2
30	278.4	51.3	. 1	102.6	. 2	154.0	. 6	205.3	1.0	256.6	1.6	307.9	2.2
40	37 I .2	51.1	. 1	102.2	. 2	I 53.3	. 6	204.4	1.0	255.5	1.5	306.6	2.2
50	464.0	50.9	. 1	101.8	. 2	I 52.6	. 6	203.5	1.0	254.4	1.5	305.3	2.2
5700	\cdots	50.6	. 1	101.3	.2	152.0	. 6	202.6	1.0	253.2	1.5	303.9	2.2
10	92.8	50.4	I	100.8	. 2	151.3	. 6	201.7	1.0	252.1	1.5	302.5	2.2
20	185.6	50.2	. 1	100.4	. 2	I 50.6	. 6	200.8	1.0	251.0	1.5	301.1	2.2
30	278.4	50.0	. 1	99.9	. 2	149.9	. 6	199.8	1.0	249.8	I. 5	299.8	2.2
40	371.2	49.7	. 1	99.5	. 2	149.2	. 6	199.0	1.0	248.7	1.5	298.4	2.2
50	464.0	49.5	. 1	99.0	. 2	148.5	. 5	198.0	1.0	247.6	1.5	297.1	2.2
5800		$49 \cdot 3$. 1	98.6	. 2	147.8	$\cdot 5$	197.1	1.0	246.4	1.5	295.7	2.2
10	92.8	49.0	. 1	98.1	. 2	147.2	- 5	196.2	1.0	245.2	1.5	294.3	2.2
20	185.6	48.8	. 1	97.6	. 2	146.5	. 5	195.3	1.0	244.1	1.5	292.9	2.2
30	278.5	48.6	. 1	97.2	. 2	145.8	. 5	194.4	1.0	243.0	1.5	291.5	2.2
40	371.3	48.4	. 1	96.7	. 2	I45. 1	- 5	$193-4$	1.0	241.8	1.5	290.2	2.2
50	464.I	48.1	. 1	96.3	. 2	144.4	$\cdot 5$	192.5	1.0	240.6	1.5	288.8	2.1
5900		47.9	. 1	95.8	. 2	143.7	- 5	191.6	1.0	239.5	1.5	287.4	2.1
10	92.8	47.7	. 1	$95 \cdot 3$. 2	143.0	. 5	190.7	1.0	238.4	1.5	286.0	2.1
20	185.7	47.4	. 1	94.9	.2	142.3	- 5	189.7	1.0	237.2	İ. 5	284.6	2.1
30	278.5	47.2	. 1	94.4	. 2	141.6	. 5	188.8	1.0	236.0	1.5	283.2	2.1
40	371.3	47.0	. 1	93.9	. 2	I40.9	. 5	187.9	. 9	234.8	1.5	281.8	2.1
50	464.2	46.7	. 1	93.5	. 2	140.2	$\cdot 5$	186.9	. 9	233.6	1.5	280.4	2.1
6000		46.5	. 1	93.0	. 2	139.5	$\cdot 5$	186.0	. 9	232.5	1.5	279.0	2.1
10	92.8	46.3	. 1	92.5	. 2	138.8	. 5	185.0	. 9	231.3	I. 5	277.6	2.1
20	185.7	46.0	. 1	92.1	. 2	138.1	. 5	184.1	9	230.2	1.4	276.2	2.1
30	278.6	45.8	. 1	91.6	. 2	I 37.4	. 5	183.2	. 9	229.0	I. 4	274.8	2.1
40	371.4	45.6	. 1	91.1	.2	136.7	. 5	182.2	. 9	227.8	I. 4	273.4	2.1
50	464.2	45.3	.I	90.6	. 2	I 36.0	. 5	181.3	. 9	226.6	I. 4	271.9	2.1
6100	45.1	. 1	90.2	. 2	135.3	$\cdot 5$	180.4	. 9	225.4	1.4	270.5	2.1
10	92.9	44.8	. 1	89.7	. 2	134.6	. 5	179.4	.9	224.2	1.4	269.1	2.1
20	185.7	44.6	. 1	89.2	.2	133.9	. 5	178.5	. 9	223.1	1.4	267.7	2.1
30	278.6	44.4	. 1	88.8	. 2	133.1	- 5	177.5	$\cdot 9$	221.9	I. 4	266.3	2.0
40	37 I .4	44.1	. 1	88.3	. 2	132.4	. 5	176.6	. 9	220.7	I. 4	264.8	2.0
50	464.3	43.9	. 1	87.8	. 2	131.7	. 5	175.6	. 9	219.6	I. 4	263.5	2.0
6200		43.7	$\cdot 1$	87.3	. 2	131.0	$\cdot 5$	174.7	. 9	218.4	I. 4	262.0	2.0
10	92.9	43.4	. 1	86.9	. 2	130.3	. 5	173.7	. 9	217.2	1.4	260.6	2.0
20	185.7	43.2	. 1	86.4	. 2	129.6	. 5	172.8	. 9	216.0	I. 4	259.1	2.0
30	278.6	43.0	. 1	85.9	. 2	128.8	. 5	171.8	. 9	214.8	I. 4	257.7	2.0
40	371.5	42.7	. 1	85.4	. 2	128.1	. 5	170.8	. 9	213.6	I. 4	256.3	2.0
50	464.4	42.5	. 1	84.9	.2	127.4	. 5	169.9	. 9	212.4	1.4	254.8	2.0
6300		42.2	.I		.2	126.7	- 5	168.9	. 9	211.2	1.4	253.4	2.0
10	92.9	42.0	. 1	84.0	. 2	126.0	. 5	168.0	. 9	210.0	1.4	251.9	2.0
20	185.8	41.7	. 1	83.5	. 2	125.2	. 5	167.0	.9	208.8	I. 4	250.5	2.0
30	278.7	41.5	. 1	83.0	. 2	124.5	. 5	166.0	. 9	207.5	I. 3	249.0	1.9
40	371.6	41.3	. 1	82.5	.2	123.8	. 5	165.0	. 9	206.3	1.3	247.6	1.9
50	464.4	41.0	. 1	82.0	. 2	123.1	. 5	164.1	.9	205.1	1.3	246.1	1.9
6400		40.8	. 1	81.6	. 2	122.3	. 5	163.1	.9	203.9	1.3	244.7	1.9

Table 23.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $20 . \frac{1}{20} \cdot$
[Derivation of table explained on pp. liii.-lviii.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -											
		not longitude.		20' longitude.		30' longitude.		40' longitude.		50^{\prime} longitude		${ }^{\circ} \mathrm{O}$ longitude.	
		x	y	x	y	x	y	x	y	\star	y	x	y
	mm.	mm.	mm.	mm.	.	mme.	mm.	mm.	mm.	mm.	mm .	m	mm.
$64^{\circ} 0^{\prime}$		40.8	. 1	81.6	. 2	122.3	$\cdot 5$	163.1	$\cdot 9$	203.9	1.3	244.7	I. 9
10	92.9	40.5	.1	81.1	.2	121.6	. 5	162.2	. 8	202.7	1.3	243.2	r. 9
20	18.8	40.3	. 1	80.6	. 2	120.9	. 5	161.2	. 8	201.4	1.3	241.7	1.9
30	278.7	40.0	. 1	80.1	. 2	120.1	. 5	160.2	. 8	200.2	1.3	240.2	1.9
40	371.6	39.8	. 1	79.6	.2	119.4	- 5	159.2	. 8	199.0	1.3	238.8	1.9
50	464.5	39.6	. 1	79.1	. 2	118.7	$\cdot 5$	I 58.2	. 8	197.8	1.3	237.4	1.9
6500	.	39.3	. 1	78.6	. 2	117.9	$\cdot 5$	157.2	. 8	196.6	1.3	235.9	1.9
10	92.9	39.1	. 1	78.1	. 2	117.2	. 5	156.2	. 8	$195 \cdot 3$	1.3	234.4	1.9
20	185.8	38.8	. 1	77.6	. 2	116.5	. 5	155.3	. 8	194.1	1.3	232.9	1.8
30	278.7	38.6	. 1	77.2	. 2	115.7	. 5	154.3	. 8	192.9	1.3	231.5	1.8
40	371.6	38.3	. 1	76.7	. 2	115.0	. 5	153.3	. 8	191.6	1.3	230.0	1.8
50	464.6	38.1	. 1	76.2	.2	114.2	. 5	152.3	. 8	190.4	1.3	228.5	1.8
6600	37.8	.1	75.7	.2	113.5	$\cdot 5$	151.4	. 8	189.2	1.3	227.0	1.8
10	92.9	37.6	. 0	75.2	. 2	112.8	. 4	150.4	. 8	188.0	1.3	225.5	1.8
20	185.9	37.3	. 0	74.7	.2	112.0	. 4	149.4	. 8	186.7	1.2	224.0	1.8
30	278.8	37.1	. 0	74.2	. 2	111.3	. 4	148.4	. 8	185.4	1.2	222.5	1.8
40	371.7	36.8	. 0	73.7	.2	110.6	- 4	147.4	. 8	184.2	1.2	221.1	1.8
50	464.6	36.6	. 0	73.2	$\cdot 2$	109.8	. 4	146.4	. 8	183.0	1.2	219.6	1.8
6700	.	36.4	. 0	72.7	. 2	109.0	- 4	145.4	. 8	181.8	1.2	218.1	1.8
10	92.9	36.1	. 0	72.2	. 2	108.3	. 4	144.4	. 8	180.5	1.2	276.6	1.7
20	185.9	35.8	. 0	71.7	. 2	107.6	. 4	I 43.4	. 8	179.2	1.2	215.1	1.7
30	278.8	35.6	. 0	71.2	. 2	106.8	. 4	142.4	. 8	178.0	1.2	213.6	1.7
40	371.8	35.4	. 0	70.7	.2	1060	- 4	141.4	. 8	176.8	1.2	212.1	1.7
50	464.7	35.1	. 0	70.2	. 2	105.3	. 4	140.4	. 8	175.5	1.2	210.6	1.7
6800		34.8	. 0	69.7	. 2	104.6	. 4	139.4	. 8	174.2	12	209.1	1.7
10	93.0	34.6	. 0	69.2	.2	103.8	. 4	138.4	. 7	173.0	1.2	207.6	1.7
20	185.9	34.4	. 0	68.7	. 2	103.0	. 4	137.4	. 7	171.8	I. 2	206.1	1.7
. 30	278.8	34.1	. 0	68.2	. 2	102.3	. 4	136.4	. 7	170.4	I.I	204.5	1.7
40	371.8	33.8	. 0	67.7	.2	101.5	. 4	135.4	. 7	169.2	1.1	203.0	1.7
50	464.8	33.6	. 0	67.2	. 2.	100.8	. 4	134.4	. 7	168.0	1.1	201.5	1.6
6900		$33 \cdot 3$. 0	66.7	. 2	100.0	. 4	133.4	$\cdot 7$	166.7	1.1	200.0	1. 6
10	93.0	33.1	. 0	66.2	$\cdot 2$	99.3	. 4	132.4	. 7	165.4	1.1	198.5	1. 6
20	185.9	32.8	. 0	65.7	.2	98.5	. 4	131.3	. 7	164.2	I.I	197.0	1. 6
30 40	278.9 371.8	32.6 32.3	. 0	65.2	$\cdot 2$	97.7	. 4	130.3	. 7	162.9	I.I	195.5	1.6
40 50	371.8 464.8	32.3	. 0	64.7	. 2	97.0	- 4	129.3	- 7	161.6	1.1	194.0	1.6
50	464.8	32.1	. 0	64.1	$\cdot 2$	96.2	$\cdot 4$	128.3	$\cdot 7$	160.4	I. 1	192.4	I. 6
7000		31.8	. 0	63.6	. 2	95.5	. 4	127.3	. 7	I 59.1	1.1	190.9	I. 6
10	93.0	3 3 .6	. 0	63.1	.2	94.7	. 4	126.2	$\cdot 7$	157.8	1.1	189.4	1.6
20	185.9	31.3	. 0	62.6	. 2	93.9	-4	125.2	. 7	156.6	1	187.9	1.6
30 40	278.9 371.9	31.1 30.8	. 0	62.1 61.6	. 2	93.2	-4	124.2	. 7	155.3	1.1	186.4	1.5
40 50	371.9 464.9	30.8 30.5	. 0	61.6 61.1	. 2	92.4 91.6	. 4	123.2	$\cdot 7$	154.0	1.1	184.8	1. 5
50	464.9	30.5	. 0	61.1	. 2	91.6	. 4	122.2	$\cdot 7$	152.7	1.0	183.2	1.5
7100	930	30.3	. 0	60.6	. 2	90.9	. 4	121.2	$\cdot 7$	151.4	1.0	181.7	I. 5
10	93.0	30.0	. 0	60.1	. 2	90.1	. 4	120.2	. 7	150.2	1.0	180.2	1.5
20	186.0	29.8 29.5	. 0	59.6	.2	89.3	-4	119.1	$\cdot 7$	148.9	1.0	178.7	1. 5
30 40	278.9 371.9	29.5 29.3	. 0	59.0 58.5	. 2	88.6 87.8	. 4	118.1	. 7	147.6	1.0	177.1	1.5
50	371.9 464.9	29.3 29.0	. 0	58.5 58.0	. 2	87.8 87.1	-4	117.1 116.1	. 6	146.4	1.0	175.6	1.5 I. 4
7200		28.8	. 0	57.5	. 2	86.3	. 4	115.0	. 6	143.8	1.0	172.6	1.4

[Derivation of table explained on pp. liii-lvi.]

		CO-ORDINATES OF DEVELOPED PARALLEL FOR -											
		ro' longitude.		20^{\prime} longitude.		30' longitude.		40' longitude.		50 ${ }^{\prime}$ longitude.		Σ° longitude.	
		x	y	x	y	x	y	x	y	x	y	x	y
	mm.	$m m$.	m.	mm.	mm .	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
$72^{\circ} 00^{\prime}$	28.8	. 0	57.5	. 2	86.3	. 4	115.0	. 6	143.8	1.0	172.6	1.4
10	93.0	28.5	. 0	57.0	. 2	85.5	- 4	II 4.0	. 6	142.5	1.0	171.0	1.4
20	186.0	28.2	. 0	56.5	. 2	84.7	. 3	113.0	. 6	141.2	1.0	169.4	1.4
30	279.0	28.0	. 0	56.0	. 2	83.9	$\cdot 3$	111.9	. 6	139.9	1.0	167.9	1.4
40	372.0	27.7	. 0	55.5	. 2	83.2	$\cdot 3$	110.9	. 6	138.6	1.0	166.4	1.4
50	465.0	27.5	. 0	54.9	. 2	82.4	$\cdot 3$	109.9	. 6	137.4	I.O	164.8	1.4
7300	27.2	. 0	54.4	.2	8r. 6	$\cdot 3$	108.8	. 6	136.0	. 9	163.3	1.4
10	93.0	27.0	. 0	53.9	. 1	80.8	$\cdot 3$	107.8	. 6	${ }^{1} 34.8$. 9	16 I .7	1.4
20	186.0	26.7	. 0	53.4	. 1	80.1	- 3	106.8	. 6	133.4	. 9	160.1	1.3
30	279.0	26.4	. 0	52.9	. 1	79.3	$\cdot 3$	105.7	. 6	132.2	. 9	158.6	1.3
40	. 372.0	26.2	. 0	52.3	. 1	78.5	$\cdot 3$	104.7	. 6	I 30.8	. 9	157.0	1.3
50	465.0	25.9	. 0	51.8	. 1	77.7	$\cdot 3$	103.6	. 6	129.6	. 9	155.5	1.3
7400	25.6	. 0	51.3	. 1	77.0	$\cdot 3$	102.6	. 6	128.2	. 9	153.9	1.3
10	93.0	25.4	. 0	50.8	. 1	76.2	$\cdot 3$	101.6	. 6	127.0	. 9	152.3	I. 3
20	186.0	25.1	. 0	50.3	. 1	75.4	- 3	100.5	. 6	125.6	-9	I 50.8	1.3
30	279.0	24.9	. 0	49.7	. 1	74.6	$\cdot 3$	99.5	. 6	124.4	. 9	149.2	1.3
40	372.0	24.6	. 0	49.2	. 1	73.8	$\cdot 3$	98.4	. 6	123.0	. 9	147.7	1.2
50	465.0	24.4	. 0	48.7 -	. 1	73.0	$\cdot 3$	97.4	. 5	121.8	. 9	146.I	1.2
7500		24.1	. 0	48.2	.1	72.3	$\cdot 3$	96.4	$\cdot 5$	120.4	. 8	144.5	1.2
10	93.0	23.8	. 0	47.7	. 1	71.5	$\cdot 3$	$95 \cdot 3$. 5	119.2	. 8	143.0	1.2
20	186.0	23.6	. 0	47.1	. 1	70.7	$\cdot 3$	94.2	. 5	117.8	. 8	141.4	1.2
30	279.1	23.3	. 0	46.6	. 1	69.9	- 3	93.2	. 5	116.5	. 8	139.8	1.2
40	372.1	23.0	. 0	46.1	I	69.1	$\cdot 3$	92.2	$\cdot 5$	115.2	. 8	$1{ }^{1} 8.2$	1.2
50	465.I	22.8	. 0	$45 \cdot 5$. 1	68.3	$\cdot 3$	91.1	. 5	113.8	. 8	$13^{6.6}$	1.1
7600	22.5	. 0	45.0	.I	67.5	$\cdot 3$	90.0	$\cdot 5$	112.6	. 8	135.1	1.1
10	93.0	22.2	. 0	44.5	. 1	66.8	- 3	89.0	. 5	III. 2	. 8	133.5	1.1
20	186.I	22.0	. 0	44.0	. 1	65.9	$\cdot 3$	87.9	. 5	109.9	. 8	131.9	1.1
30	279.1	21.7	. 0	43.4	. 1	65.2	$\cdot 3$	86.9	$\cdot 5$	108.6	8	130.3	1.1
40	372.1	21.5	. 0	42.9	. 1	64.4	- 3	85.8	. 5	107.3	. 8	128.8	1.1
50	465.1	21.2	. 0	42.4	. 1	63.6	$\cdot 3$	84.8	$\cdot 5$	106.0	$\cdot 7$	127.1	1.1
7700		20.9	. 0	41.9	. 1	62.8	$\cdot 3$	83.7	$\cdot 5$	104.6	$\cdot 7$	125.6	1.1
10	93.0	20.7	. 0	41.3	. 1	62.0	$\cdot 3$	82.7	. 5	103.4	$\cdot 7$	124.0	1.1
20	186.I	20.4	. 0	40.8	. 1	61.2	$\cdot 3$	81.6	. 5	102.0	. 7	122.4	1.0
30	279.1	20.1	. 0	40.3	. 1	60.4	$\cdot 3$	80.6	$\cdot 5$	100.7	$\cdot 7$	120.8	1.0
40	372.2	19.9	. 0	39.8	I	59.6	$\cdot 3$	79.5	-4	99.4	.7	119.3	1.0
50	465.2	19.6	. 0	39.2	. 1	58.8	$\cdot 3$	78.4	. 4	98.0	$\cdot 7$	117.7	1.0
7800		19.4	. 0	38.7	. 1	58.0	. 2	77.4	-4	96.8	. 7	116.1	1.0
10	93.0	19.1	. 0	38.2	. 1	57.2	.2	76.3	-4	95.4	$\cdot 7$	114.5	1.0
20	186.1	18.8	. 0	37.6	. 1	56.5	.2	$75 \cdot 3$	- 4	94.1	.7	112.9	1.0
30	279.1	18.6	.	37.1	. 1	55.7	.2	74.2	. 4	92.8	$\cdot 7$	111.4	1.0
40	372.2	18.3	. 0	36.6	. 1	$54: 9$. 2	73.2	. 4	91.4	. 6	109.7 108.1	. 9
50	465.2	18.0	. 0	36.0	. 1	54.1	. 2	72.1	. 4	90.1	. 6	108.1	-9
7900		17.8	. 0	$35 \cdot 5$. 1	53.3	. 2	71.0	. 4	88.8	. 6	106.6	. 9
10	93.0	17.5	. 0	35.0	. 1	52.5	2	70.0	. 4	87.4	. 6	104.9	. 9
20	186.1	17.2	. 0	34.5	1	51.7	. 2	68.9	-4	86.2	. 6	103.4	. 9
30	279.2	17.0	. 0	$33 \cdot 9$	1	50.9	. 2	67.8	. 4	84.8 83.4	. 6		. 8
40	372.2 465.2	16.7 16.4	. 0	33.4 32.9	. 1	50.1 49.3	. 2	66.8 65.7	-4	83.4 82.2	. 6	100.1 98.6	. 8
8000		16.2	. 0	32.3	. 1	48.5	. 2	64.6	-4	80.8	. 6	97.0	. 8

［Derivation of table explained on pp．liii－lvi．］

		ABSCISSAS OF DEVELOPED PARALLEL．						ORDINATES OF DEVELOPED PARALLEL．		
		5＇	10^{\prime}	15^{\prime}	20^{\prime}	25^{\prime}	30^{\prime}			
	mm．	mm．	mm．	mm．	mm．	mm．	mm．	發通		
$0^{\circ} 00^{\prime}$	－．．	116.0	231.9	347.9	463.8	579.8	695.8	号虫	0°	1°
10	230.4	I 16.0	231.9	347.9	463.8	579.8	695.8	9．E．E		
20	460.7	116.0	231.9	347.8	463.8	579.8	$695 \cdot 7$			
30	691.0	116.0	231.9	347.8	463.8	579.8	695.7			
40	921.4	116.0	231.9	347.8	463.8	579.8	695.7	5	m． 0.0	$m m$. 0.0
50	1151.8	115.9	231.9	347.8	463.8	579.7	695.6	10	0.0 0.0	0．0
100		115.9	231.9	347.8	463.8	579.7	695.6	15	0.0	0.0
10	230.4	I 115.9	231.9	347.8	463.7	579.6	695.6	20	0.0	0.0
20	460.7	115.9	231.8	347.8	463.7	579.6	695.5	25	0.0	0.0
30	691．0	115.9	231.8	347.7	463.6	579.6	695.5	30	0.0	0.1
40	921.4	115.9	231.8	347.7	463.6	579.6	695.5			
50	1151.8	115.9	231.8	347.7	463.6	579.5	$695 \cdot 4$			
200	．．．．．	II 5.9	231.8	347.7	463.6	579.4	$695 \cdot 3$		2°	3°
10	230.4	115.9	231.8	347.6	463.5	579.4	$695 \cdot 3$			
20	460.7	115.9	231.7	347.6	463.4	579.3	695.2	5	0.0	0.0
30 40	691.0	I 15.8	231.7	$347 \cdot 5$	463.4	579.2	695.0	10	0.0	0.0
40	921.4	115.8	231.7	347.5	$463 \cdot 3$	579.2	695.0	15	0.0	0.0
50	1151.8	I 15.8	231.6	$347 \cdot 5$	463.3	579.1	694.9	20	0.0	0.1
300		115.8	231.6	347.4	463.2	579.0	694.8	25 30	0.1 0.1	0.1 0.2
10	230.4	115.8	231.6	$347 \cdot 3$	463.1	578.9	694.7	30	0.1	0.2
20	460.7	115.8	231.5	347.3	463.0	578.8	694.6			
30	691.1	115.7	231.5	347.2	463.0	578.7	694.4			
40	921.4	II 15.7	231.4	347.2	462.9	578.6	$694 \cdot 3$		4^{0}	5°
50	1151.8	115.7	231.4	347．1	462.8	578.5	694.2		4	5
400		II 5.7	231.4	347.0	462.7	578.4	694． 1	5	0.0	0.0
10	230.4	115.7	23 r .3	347.0	462.6	578.2	693.9	10	0.0	0.0
20	460.7	115.6	231.3	346.9	462.5	578.2	693.8	15	0.1	0.1
30	691.1	115.6	231.2	346.8	462.4	578.0	693.6	20	0.1	0.1
40	92 I .4	115.6	23 I .1	346.7	462.3	577.8	693.4	25	o． 1	0.2
50	1151.8	115.6	231.1	346.6	462.2	577.8	693.3	30	0.2	0.3
500	．．．．．．．．	115.5	231.0	346.6	462.1	577.6	693.1			
10 20	230.4 460.7	II 15.5	231.0	346.5	462.0	577.4	692.9			
30	460.7 691.1	115.5 II 5.4	230.9 230.8	346.4 346.3	461.8	577.3 577.1	692.8		6°	7°
40	921.5	II 5.4	230.8	346.2	461.6	577.0	692.3			
50	I 151.8	115.4	230.7	346．I	461.4	576.8	692.2	5 10	0.0 0.0	0.0 0.0
600		115.3	230.7	346.0	46 r .3	576.6	692.0	15	0.1	0.1
10	230.4	115.3	230.6	345.9	461.2	576.4	691.7	20	0.1	0.2
20	460.8 691.1	115.2	230.5	345.8	461.0	576.2	691.5	25	0.2	0.3
30	691.1	115.2	230.4	345.7	460.9	576.1	691.3	30	0.3	0.4
40	921.5	115.2	230.4	345.5	460.7	575.9	691.1			
50	1151．9	115.1	230.3	345.4	460.6	575.7	690.8			
700		115.1	230.2	$345 \cdot 3$	460.4	575.5	690.6		8°	
10	230.4	115.1	230.1	345.2	460.2	575.3	690.4			
20	460.8	115.0	23.0	345.0	460.0	575.0	690.1	5	0.0	
30 40 40	691.1 921.5	115.0 114.9	229.9	344.9	459.9	574.8	689.8	10	0.0	
40 50	921.5 1151.9	114.9 114.9	229.9 229.8	344.8 344.6	459.7 459.5	574.6	689.6	I 5	0.1	
50	1151.9	114.9	229.8	344.6	459.5	574.4	689.3	20	0.2	
800		I 14.8	229.7	344.5	459.4	574.2	689.0	25 30	0.3 0.4	

[Derivation of table explaioed on pp. liii-lvi.]

table 24.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE Eणठण.
[Derivation of table explained on pp. liii--lvi.]

		AbSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED PARALLEL.		
		5^{\prime}		15^{\prime}	20^{\prime}	25^{\prime}	30^{\prime}			
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	\%		
$16^{\circ} 00^{\prime}$	\ldots	111.5	223.0	$334 \cdot 5$	446.0	557.4	668.9	宮品	16°	17^{0}
10	230.5	111.4	222.8	334.2	445.6	557.0	668.3	+,		
20	461.1	III. 3	222.6	333.9	445.2	556.5	667.8			
30	691.6	111.2	222.4	333.6	444.8	556.0	667.2		m,	
40	922.1	III.1	222.2	333.3	444.4	555.6	666.7			mm.
50	1152.6	III.O	222.0	333.1	444.I	555.1	666.1	10	0.0 0.1	0.0 0.1
1700	110.9	221.8	332.8	443.7	554.6	665.5	15	0.2	0.2
10	230.6	110.8	221.6	332.5	$443 \cdot 3$	554.1	664.9	20	0.4	0.4
20	461.1	110.7	221.4	332.2	442.9	553.6	664.3	25 30	0.6 0.8	0.6
30	691.6	110.6	221.2	331.9	442.5	553.1	663.7		0.8	0.8
40	922.2	110.5	221.0	331.6	442.1	552.6	663.1			
50	1152.8	110.4	220.8	331.3	441.7	552.1	662.5			
1800		110.3	220.6	331.0	441.3	551.6	661.9		18°	19°
10	230.6	110.2	220.4	330.6	440.8	551.0	661.3			
20	46 t .1	110.1	220.2	330.3	440.4	550.6	660.7	5	0.0	0.0
30	691.7	110.0	220.0	330.0	440.0	550.0	660.0	10	0.1	0.1
40	922.3	109.9	219.8	329.7	439.6	549.4	659.3	15	0.2	0.2
50	I 152.8	109.8	219.6	329.4	439.2	549.0	658.7	20	0.4	0.4
1900	109.7	219.4	329.0	438.7	548.4	658.1	25 30	0.6 0.9	0.6 0.9
10	230.6	109.6	219.1	328.7	438.3	547.8	657.4	3		0.9
20	461.2	109.5	218.9	328.4	437.8	547.3	656.8			
30	691.8	109.4	218.7	328.0	437.4	546.8	656.1			
40	922.4	109.2	218.5	327.7	436.9	546.1	655.4		20°	21°
50	1153.0	109. 1	218.2	327.4	436.5	545.6	654.7			21
2000		109.0	218.0	327.0	436.0	545.0	654.1	5	0.0	0.0
10	230.6	108.9	217.8	326.7	435.6	544.4	653.3	10	0.1	0.1
20	461.2	108.8	217.5	326.3	435.1	543.8	652.6	15	0.2	0.3
30	691.9	108.7	217.3	326.0	434.6	543.3	652.0	20	0.4	0.5
40	922.5	108.5	217.1	325.6	434.2	542.7	651.2	25	0.7	0.7
50	II 53.1	108.4	216.8	$325 \cdot 3$	$433 \cdot 7$	542.1	650.5	30	1.0	1.0
2100	.130.6	108.3	216.6	324.9	433.2	541.5	649.8			
10	230.6	108.2	216.4	324.5	432.7	540.9	649.1			
20	$46 \mathrm{I} \cdot 3$	108.1	216.1	324.2	432.2	540.3	648.4		22°	23°
30	692.0	107.9	215.9	323.8	431.7	539.6	647.6			
40	922.6	107.8	215.6	323.4	431.2	539.0	646.9			
50	II 53.2	107.7	215.4	323.1	430.8	538.4	646.1	$\begin{array}{r}5 \\ 10 \\ \hline\end{array}$	0.0 0.1 0.3	0.0 0.1
2200	107.6	215.1	322.7	430.3	537.8	645.4	15	0.3	0.3
10	230.7	107.4	214.9	322.3	429.8	537.2	644.6	20	0.5	0.5
20	461.4	107.3	214.6	321.9	429.2	536.6	643.9	25	0.7	0.8
30	692.0	107.2	214.4	321.6	428.8	536.0	643.1	30	I.I	I.I
40	922.7	107.1	214.1	321.2	428.2	535.3	642.4			
50	1153.4	106.9	213.9	320.8	427.7	534.6	641.6			
2300	106.8	213.6	320.4	427.2	534.0	640.8		24°	
10	230.7	106.7	213.3	320.0	426.6	533.3	640.0			
20	461.4	106.5	213.1	319.6	426.1	532.6	639.2	5	0.0	
30 40	692.1 922.8	106.4	212.8	319.2 318.8	425.6	532.0	638.4	10	0.1	
40 50	922.8 I 153.6	106.3	212.5 212.3	318.8 318.4	425.0	531.3	637.6	15	0.3	
	1153.6	10.1	212.3	318.4	424.5	530.6	636.8	20	0.5	
2400		106.0	212.0	318.0	424.0	530.0	636.0	25 30	0.8 1.1	

[Derivation of table explained on pp. liii-lvi.]

		ABSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED Parallel.		
		5	10^{\prime}	15^{\prime}	20^{\prime}	25^{\prime}	30^{\prime}			
	mm.	mm.	mm.	mm. ${ }^{\text {. }}$	$m m$.	mm.	mm.	怱家		
$24^{\circ} 0^{\prime}$		106.0	212.0	318.0	424.0	530.0	636.0	-60	24°	25°
10	230.7	105.9	21.7	317.6	423.4	529.3	635.2	,		
20	461.5	105.7	21.4	317.2	422.9	528.6	634.3			
30	692.2	105.6	211.2	316.7	422.3	527.9	$633 \cdot 5$		mm.	mm.
40	923.0	105.4	210.9	316.3	42 I .8	527.2	632.6	5^{\prime}	0.0	0.0
50	1153.7	105.3	210.6	315.9	42 I .2	526.5	631.8	10	0.0	0.1
2500		105.2	210.3	315.5	420.6	525.8	631.0	15	0.3	0.3
10	230.8	105.0	210.0	315.0	420.0	525.0	630.1	20	0.5 0.8	0.5 0.8
20	461.5	104.9	209.7	314.6	419.5	524.4	629.2	30	I.I	1.2
30	692.3	104.7	209.4	314.2	418.9	523.6	628.3			
40	923.1	104.6	- 209.2	313.7	418.3	522.9	627.5			
50	1153.8	104.4	208.9	313.3	417.7	522.2	626.6			
2600	104.3	208.6	312.9	417.2	521.4	625.7		26°	27°
10	230.8	104.I	208.3	312.4	416.6	520.7	624.8			
20	461.6	104.0	208.0	312.0	416.0	520.0	623.9	5	0.0	0.0
30	692.4	103.8	207.7	311.5	415.4	519.2	623.0	10	0.1	0.1
40	923.2	103.7	207.4	31 I .15	414.8	518.4	622.1	15	0.3	0.3
50	1154.0	103.5	207.1	310.6	414.2	517.7	621.2	20	0.5 0.8	0.5 0.8
2700		103.4	206.8	310.2	413.6	517.0	620.3	30	1.2	1.2
10	230.8	103.2	206.5	309.7	413.0	516.2	619.4			
20	461.7	103.I	206.2	309.2	412.3	515.4	618.5			
30	692.5	102.9	205.8	308.8	411.7	514.6	617.5 616.6			
40	923.3 1154.2	102.8	205.5 205.2	308.3	411.1	${ }_{513.8} 5$	616.6 615.7		28°	29°
2800	.	102.5	204.9	307.4	409.8	512.3	614.8	5	0.0	0.0
10	230.9	102.3	204.6	306.9	409.2	511.5	613.8	10	0.1	0.1
20	461.7	102.1	204.3	306.4	408.6	510.7	612.8	15	0.3	0.3
30	692.6	102.0	204.0	305.9	407.9	509.9	611.9	20	0.6	0.6
40	- 923.5	101.8	203.6	305.5	407.3	509.1	610.9	25	0.9	0.9
50	1154.4	101.7	203.3	305.0	406.6	508.3	610.0	30	1.3	1.3
2900	101.5	203.0	304.5	406.0	507.5	609.0		-	
10	230.9	101. 3	202.7	304.0	405.4	506.7	608.0		30°	31°
20	46 I .8	101.2	202.3	303.5	404.7	505.8	607.0			
30	692.7	101.0	202.0	303.0	404.0	505.0	606.0			
40	923.6 1154.5	100.8	201.7	302.5	403.4	504.2	605.0 604.1	5	0.0	0.0
50	1154.5	100.7	201.4	302.0	402.7	503.4	604.1	10	0.1	0.1
3000		100.5	201.0	301.5	402.0	502.6	603.1	15	0.3	0.3 0.6
10	230.9	100.3	200.7	301.0	401.4	501.7	602.0	25	0.9	0.9
20	46 I .9	100.2	200.3	300.5	400.7	500.8	601.0	30	I. 3	1.3
30	692.8	100.0	200.0	300.0	400.0	500.0	599.9			
40	923.8	99.8	199.6	299.5	399.3	499.I	598.9			
50	1154.7	99.6	199.3	299.0	398.6	498.2	597.9		32°	
3100		99.5	199.0	298.4	397.9	497.4	596.9			
10	231.0	99.3	198.6	297.9	397.2	496.5	595.8			
20	461.9	99.1	198.3	297.4	396.5	495.6	594.8	5	0.0	
30	692.9	99.0	197.9	296.9	395.8	494.8	593.8	10	0.2	
40	923.9	98.8	197.6	296.3	395.I	493.9	592.7	15	0.3	
50	1154.8	98.6	197.2	295.8	394.4	493.0	591.6	20	0.6 0.9	
3200		98.4	196.9	295.3	393.7	492.2	590.6	30	1.4	

Table 24.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $80 \frac{1}{8} 00^{\circ}$
[Derivatioc of table explained on pp. liii-lvi.]

[Derivation of table explained on pp. liii-lvi.]

Table 24.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\overline{\sigma 0} \delta \sigma \sigma$.
[Derivation of table explained on pp. liii-lvi.]

		ABSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED parallel.		
		5^{\prime}		15^{\prime}		25	30^{\prime}			
	mm.	mim.	mm.	mm.	mm.	mm.	mm.		4°	
$48^{\circ} 00^{\prime}$	77.7	155.5	233.2	311.0	388.7	466.4		48°	49°
10	231.6	77.5	± 55.0	232.5	310.0	387.4	464.9	-		
20	463.3	77.2	154.5	231.7	308.9	386.2	463.4			
30	695.0	77.0	154.0	230.9	307.9	384.9	461.9		mm	mm.
40	926.6	76.7	153.5	230.2	306.9	383.6	460.4	5	0.0	0.0
50	1158.2	76.5	152.9	229.4	305.9	382.4	458.8	10	0.2	0.2
4900		76.2	152.4	228.7	304.9	381.1	457.3	15	0.4 0.7	0.4 0.7
10	231.7	76.0	151.9	227.9	303.8	379.8	455.8	25	0.7 1.0	0.7 1.0
20	463.4	75.7	151.4	227.1	302.8	378.6	$454 \cdot 3$	25 30	1.0	
30	695.1	75-4	150.9	226.4	301.8	377.2	452.7		1.5	. 5
40	926.8	75.2	150.4	225.6	300.8	376.0	45 I . 1			
50	1158.4	74.9	149.9	224.8	299.8	374.7	449.6			
5000		74-7	149.4	224.0	298.7	373.4	448.1		50°	51°
10	231.7	74.4	148.8	223.3	297.7	372.1	446.5			
20	463.5	74.2	148.3	222.5	296.6	370.8	445.0	5	0.0	0.0
30	695.2	73.9	147.8	221.7	295.6	369.5	$443 \cdot 4$	10	0.2	0.2
40	926.9	73.6	147.3	220.9	294.6	368.2	441.8	15	0.4	0.4
50	1158.6	73.4	146.8	220.1	293.5	366.9	440.3	20	0.7	0.7
5100	73.1	146.2	219.4	292.5	365.6		25 30	1.0 1.5	1.0 1.5
10	231.8	72.9	145.7	218.6	291.4	364.3	437.2	30	1.5	1.5
20	463.5	72.6	145.2	217.8	290.4	363.0	$435 \cdot 5$			
30	695.3	72.3	144.7	217.0	289.3	361.6	434.0°			
40	927.1 1158.8	72.1	144.1	216.2	288.3	360.4	432.4		52°	53°
50	1158.8	71.8	143.6	215.4	287.2	359.0	430.8			
5200		71.5	143.1	214.6	286.2	357.7	429.2	5	0.0	0.0
10	231.8	71.3	142.5	213.8	285.1	356.4	427.6	10	0.2	0.2
20	463.6	71.0	142.0	213.0	284.0	355.0	426.1	15	0.4	0.4
30	695.4	70.7	141.5	212.2	283.0	353.7	424.4	20	0.7	0.6
40	$\begin{array}{r}927.2 \\ \hline 159.0\end{array}$	70.5	140.9	211.4	281.9	352.4	422.8	25	1.0	1.0
50	1159.0	70.2	140.4	210.6	280.8	351.0	42 I .3	30	1.5	1.5
5300	\cdots	69.9	139.9	209.8	279.8	349.7	419.6			
10	231.8	69.7	139.3	209.0	278.7	348.4	418.0			
20	463.7	69.4	138.8	208.2	277.6	347.0	416.4		54°	55°
30	695.6	69.1	138.3	207.4	276.5	345.6	414.8			
40	927.4	68.8	137.7	206.6	$275 \cdot 4$	344.2	413.1			
50	1159.2	68.6	137.2	205.7	274.3	342.9	411.5	5	0.0 0.2	0.0 0.2
5400		68.3	136.6	204.9	273.2	341.6	409.9	15	0.4	0.4 0.6
10	231.9	68.0	136.1	204.1	272.2	340.2	408.2	20	0.6	0.6 1.0
20	463.8	67.8	135.5	203.3	271.0	338.8	406.6	25	1.0	1.0 1.4
30	695.7	67.5	135.0	202.4	269.9	337.4	404.9	30	1.4	1,4
40	$\begin{array}{r}927.6 \\ \hline\end{array}$	67.2	134.4	201.6	268.8	336.0	$403 \cdot 3$			
50	1159.4	66.9	133.9	200.8	267.8	334.7	401.6			
5500	2319	66.7	133.3	200.0	266.6	333.3	400.0		56°	
10	231.9	66.4	132.8	199.1	265.5	331.9	398.3			
20	463.9	66.1	132.2	198.3	264.4	330.5	396.6	5	0.0	
30 40	695.8	65.8	131.7	197.5	263.3	329.2	395.0	10	0.2	
40 50	927.7 1159.6	65.6 65.3	131.1 130.5	196.6	262.2	327.8	393.3	15	0.4	
50	1159.6	65.3	130.5	195.8	261.1	326.4	391.6	20	0.6	
5600		65.0	130.0	195.0	260.0	325.0	389.9	25 30	1.0 1.4	

［Derivation of table explained oa pp．liii－lvi．］

		ABSCISSAS OF DEVELOPED PARALLEL．						ORDINATES OF DEVELOPED PARALLEL．		
		5^{\prime}		$15{ }^{\prime}$		25^{\prime}	30^{\prime}			
$56^{\circ} 00^{\prime}$10	$m m$ ．	mm．	$m m$	mm．	mm．	mm．	mm．	步芭	56°	
	．．．．．．	65.0	130.0	195.0	260.0	325.0	389.9	－${ }_{0}^{\text {号苞 }}$	56°	57°
	232.0	64.7	I 29.4	194．1	258.8	323.6	388.3	9，		
20	463.9	64.4	128.9	193.3	257.7	322.2	386.6			
30	$695 \cdot 9$	64.2	128.3	192.4	256.6	320.8	384.9		mm．	mm．
40	927．9	63.9	127.7	191.6	255.5	319.4 3180	383.2	5	0.0	0.0
50	1159.8	63.6	127.2	190.8	254.4	318.0	381.5	10	0.2	0.2
5700IO	\cdots	63.3	126.6	189.9	253.2	316.6	379.9	15	0.4 0.6	0.3 0.6
	232.0	63.0	126.0	189.1	252.1	315.1	378.1	25	I． 0	1.0 1.0
20	464.0	62.7	125.5	188.2	251.0	313.7 312.3	376.4 374.8	30	1.4	1.4
30	696.0	62.5	124.9	187.4 186.5	249.8	312.3 310.8	374.8 373.0			
40	928.0 1160.0	62.2	124.3	186.5	248.7	310.8 309.4	373.0			
5800									5°	59°
		$6 \mathrm{6I} .6$	123.2	184.8	246.4	308.0	369.6		5	
10	232.0	$6 \mathrm{~L} \cdot 3$	122.6	183.9	245.2	306.6	367.9			
20	464.1	61.0	122.0	183.1	244.1	305.1	365.1	5	0.0	0.0
30	696.1	60.7	121.5	182.2	242.9	303.6	－364．4	10	0.2	0.1
40	988.2	60.4	120.9	181.4	241.8	302.2	362.7	15	0.3	0.3
50	1160.2	60.2	120.3	180.5	240.6	300.8	361.0	20	0.6 1.0	0.6 0.9
59 10 10		59.9	119.7	179.6	239.5	299.4	359.2	30	1.4	1.3
10	232.1	59.6	119.2	178.7	238.3	297.9	357.5			
20	464.2	59.3	118.6	177.9	237.2	296.4	$355 \cdot 7$			
30	－ 696.2	59.0	118.0	177.0	236.0	295.0	354.0			
40	928.3	58.7	117.4	176.1	234.8	293.6	352.3		60°	61°
50	1160.4	58.4	116.8	175.3	233.7	292.1	350.5			
6000	……	58.1	116.3	174.4	232.5	20.6	348.8	5	0.0	0.0
10	232.1	57.8	115.7	173.5	231.4	289.2	347.0 345.2	10	0.1 0.3	0.1 0.3
20	464.2	57.5	115.1	172.6	230.2	287.7 286.2	345.2 343.4	15 20	0.3 0.6	0.3 0.6
30	696.4	57.2	114.5	171.7	229.0	286.2 284.8	343.4 341.7	25	0.9	0.9
40	928.5 1160.6	57.0	113.9 113.3	170.8 170.0	227.8 226.6	284.8 283.3	341.7 340.0	30	1．3	1． 3
6100		56.4	112.7	169.1	225.4	281.8	338.2			
10	232.2	56.1	112.1	168.2	224.2	280.3	336.4 334.6		62°	63°
20	4643	55.8	111.5	167.3	223.1	278.8 277.4	334.6 332.8			
30 40	696.4 928.6	55.5 55.2	110.9	166.4 165.5	221.9	277.4 275.8	332.8 331.0			
50 50	928.6 1160.8	$55 \cdot 2$ 54.9	110.3 109.8	165.5	220.7 219.5	275.8 274.4	331.0 329.3	10	$0.0-$	0.0 0.1
6200	．．．．．．	54.6	109.2	163.7	218.3	272.9	327.5	15	0.3 0.6	0.3 0.5
10	232.2	54.3	108.6	162.8	217.1	271.4	325.7	25	0.9	0.9 0.9
20	464.4	54.0	108.0	161.9	215.9	269.9	323.9	30	I． 3	1.2
30	696.6	53.7	107.4	161.0	214.7	268.4	322.1 320.3			
40	928.8	53.4	106.8	160.1	213.5	266.9	320.3			
50	1161.0	53.1	106.2	I 59.2	212.3	265.4	318.5		64°	
6300		52.8	105.6	158.3	211.1	263.9	316.7			
10	232.2	52.5	105.0	157.4	209.9	262.4	314.9			
20	464.4	52.2	104.4	156.5	208.7	260.9	313.1	5	0.0	
30	696.7	51.9	103.8	155.6	207.5	259.4	311.3	10	0.1	
40	928.9	51.6	103.1	154.7	206.3	257.8 256.4	309.4 307.6	15 20	0.3 0.5	
50	1161.1	51.3	102.5	153.8	205.1	256.4	307.6	20 25	0.5 0.8	
6400		51.0	101.9	1 52.9	203.9	254.8	305.8	30	1.2	

Table 24.
CO－ORDINATES FOR PROJECTION OF MAPS．SCALE
［Derivation of table explained on pp．liii－1vi．］

		ABSCISSAS OF DEVELOPED PARALLEL．						ORDINATES OF DEVELOPED PaRALLEL．		
		$5{ }^{\prime}$	$10^{\prime \prime}$	15^{\prime}	20^{\prime}	25^{\prime}	30^{\prime}			
	mm．	mm ．	mm．	mm．	mm．	mm．	$m m$ ．	云家		
$64^{\circ} 00^{\prime}$		51.0	101.9	152.9	203.9	254.8	305.8	最忽		
10	232.2	50.7	101.3	152.0	202.6	253.3	304.0	H．${ }^{\text {ch }}$		
20	464.5	50.4	100.7	151.1	201.4	251.8	302.2			
30	696.8	50.1	100.1	150.2	200.2	250.3	300.4		mm．	mm．
40	929.0	49.8	99.5	149.2	199.0	248.8	298.5	5^{\prime}	0.0	0.0
50	116 t .2	49.4	98.9	148.3	197.8	247.2	296.6	10	0.1	0.0
6500	．	49.1	98.3	147.4	196.6	245.7	294.8	15	0.3 0.5	0.3 0.5
10	232.3	48.8	97.7	146.5	195.3	244.2	293.0	20 25	0.5	0.5 0.8
20	464.6	48.5	97.1	145.6	194.1	242.6	291.2	30	1.2	
30	696.9	48.2	96.4	144.7	192.9	241.1	289.3			
40	929．1	47.9	95.8	143.7	191.6	239.6	－287．5			
50	1161.4	47.6	95.2	142.8	190.4	238.0	285.7			
6600		47.3	94.6	141.9	189.2	236.5	283.8		66°	67°
10	232.3	47.0	94.0	141.0	188.0	235.0	281.9			
20	464.6	46.7	93.4	140.0	186.7	233.4	280.1	5	0.0	0.0
30	697.0	46.4	92.7	139.1	185.5	231.8	278.2	10	0.1	0.1
40	929.3	46.1	92.1	138.2	184.2	230.3	276.4	15	0.3	0.3
50	1161.6	45.8	9 c .5	137.2	183.0	228.8	274.5	20	0.5 0.8	0.5 0.8
6700	－．．．．${ }^{\text {a }}$	$45 \cdot 4$	90.9	136.3	181.8	227.2	272.6	30	I． 1	I．I
10	232.4	45． 1	90.3	135.4	180.5	225.6	270.8			
20	464.7	44.8	89.6	134.4	179.2	224.0	268.9			
30	697.0	44.5	89.0	133.5	178.0	222.5	267.0			
40	929.4	44.2	88.4	132.6	${ }^{1} 76.8$	221.0	265.1		68°	69°
50	1161.8	43.9	87.7	131.6	175.5	219.4	263.2			
6800		43.6	87.1	130.7	174.2	217.8	261.4	5	0.0	0.0
10	232.4	43.2	86.5	129.8	173.0	216.2	259.5	10	0.1	0.1
20	464.8	42.9	85.9	128.8	17 r .7	214.6	257.6	15	0.3	0.3
30	697.1	42.6	85.2	127.9	170.5	213.1	255.7	20	0.5	0.5
40	929.5	42.3	84.6	126.9	169.2	211.6	253.9	25	0.7	0.7
50	1161.9	42.0	84.0	126.0	168.0	210.0	251.9	30	I．I	1.0
6900	．．．．．．．．	41.7	83.4	125.0	166.7	208.4	250.1			
10	232.4 464.8	41.4 41.0	82.7 82.1	124.1 123.2	165.4	206.8	248.2			
20	464.8	41.0	82.1	123.2	164.2	205.2	246.3		70°	$7{ }^{0}$
30 40	697.2 929.6	40.7 40.4	81.5 80.8	122.2 I 21.2	162.9 161.6	203.6	244.4			
50	1162.0	40.1	80.2	120.3	160.4	200.5	240.6	5	0.0 0.1	0.0 0.1
7000	．	39.8	79.6	119.3	159.1	198.9		15	0.2	0.2
10	232.4	39.5	78.9	118.4	159.1 158	198.9 197.3	238.7 236.8	20 25	0.4	0.4
20	464.9	39.1	78.3	117.4	156.6	195.7	234.8	25 30	0.7 1．0	0.7 0.9
30	$697 \cdot 3$	38.8	77.6	116.5	155.3	194.1	232.9	30		
40	929.7	38.5	77.0	115.5	154.0	192.6	231.1			
50	1162.2	38.2	76.4	114.6	152.8	191.0	229.1			
7100	．．．．．．	37.9	75.7	113.6	151.5	189.4	227.2		72^{0}	
	232.5	37.6	75.1	112.6	150.2	187.8	225.3			
20	464.9 697.4	37.2	74.5	111.7	148.9	186.2	223.4	5	0.0	
30 40	697.4 929.8	36.9 36.6	73.8	110.7	147.6	184.5	22 I .4	10	0.1	
40 50	929.8 1162.3	36.6 36.3	73.2 72.5	109.7	146.3 145.0	182.9	219.5	15	0.2	
50 7200	1162	36	72.5	108.8	145.0	181.3	217.6	20	0.4 0.6	
7200		35.9	71.9	107.8	143.8	179.7	215.6	30	0.9	

[Derivation of table explained on pp. hiii-lvi.]

		ABSCISSAS OF DEVELOPED PARALLEL.						ORDINATES OF DEVELOPED Parallel.		
		5^{\prime}	10^{\prime}	15		25^{\prime}	30^{\prime}			
$72^{\circ} 00^{\prime}$	mm.	mm.	mm.	mm.	mm.	mm.	mm.			
		35.9	71.9	107.8	143.8	179.7	215.6	皆昜	72	73°
10	232.5	35.6	71.2	106.9	142.5	178.1	213.7	. ${ }^{0}$		
20	465.0	$35 \cdot 3$	70.6	105.9	141.2	176.5	211.8			
30	697.4	35.0	70.0	104.9	139.9	174.9	209.9		m	mm.
40	929.9	34.6	69.3	104.0	138.6	173.2	207.9	5 '	0.0	0.0
50	1162.4	34.3	68.7	103.0	137.3	171.6	206.0	10	0.1	0.1
7300	34.0	68.0	102.0	136.0	170.0	204.1	15 20	0.2 0.4	0.2 0.4
10	232.5	33.7	67.4	101.0	I 34.7	168.4	202.1	20	0.4 0.6	0.4 0.6
20	465.0	33.4	66.7	100.1	133.4	166.8	200.2	30	0.9	0.9
30	697.5	33.0	66.1	99.1	132.2	165.2	198.2			
40	930.0	32.7	65.4	98.1	130.8	163.6	196.3			
50	1162.6	32.4	64.8	97.1	129.5	161.9	194.3		74°	75°
7400		32.1	64.1	96.2	128.2	160.3	192.4			
10	232.5	31.7	63.5	95.2	127.0	158.7	190.4			
20	465.1	3 I .4	62.8	94.2	125.6	157.0	188.5	5	0.0	0.0
30	697.6	31.1	62.2	93.2	124.3	155.4	186.5	10	0.1	0.1
40	930.1	30.8	61.5	92.3	123.0	153.8	184.6	15	0.2	0.2
50	1162.6	30.4	60.9	91.3	121.8	152.2	182.6	20	0.4 0.6	0.3 0.5
750010	30.1	60.2	80.3	120.4	150.6	180.7	30	0.8	0.8
	232.6	29.8	59.6	89.3	119.1	148.9	178.7			
20	465.I	29.4	58.9	88.4	117.8	147.2	176.7			
30 40	697.6	29.1 28.8	58.3 57.6	87.4 86.4	116.5 115.2	145.6	174.8 172.8		76°	77°
50	$\begin{array}{r}1162.8 \\ \hline\end{array}$	28.5	56.9	85.4	113.9	142.4	170.8			
7600		28.1	56.3	84.4	112.6	140.7	168.8	5 10	0.0 0.1	0.0 0.1
10	232.6	27.8	55.6	83.4	111.2	139.0	166.9	15	0.2	0.2
20	465.1	27.5	55.0	82.4	109.9	137.4	164.9	20	0.3	0.3
30 40	697.7 930.3	27.2 26.8	54.3	81.4 80.5	108.6	135.8 134.2	162.9	25	0.5	0.5
40 50	930.3 1162.8	26.8 26.5	53.7 53.0	79.5	107.3	134.2 132.5	159.0	30	0.7	0.7
7700		26.2	52.3	78.5	104.7	130.8	157.0			
10	232.6	25.8	51.7	77.5	103.4	129.2	155.0		78°	79°
20	465.2	25.5	51.0	76.5	102.0	127.6	153.1			
30	697.8	25.2	50.4	$75 \cdot 5$	100.7	125.9	151.1			
40	930.4	24.8	49.7	74.6	99.4	124.2	149.1	5	0.0	0.0
50	1163.0	24.5	49.0	73.6	98.1	122.6	147.1	io	0.1	0.1
7800		24.2	48.4	72.6	96.8	121.0	145.1	15 20	0.2 0.3	0.1
10	232.6	23.9	47.7	71.6	$95 \cdot 4$	119.3	143.2	25	0.4	0.4
20	465.2	23.5	47.1	70.6	94.1	117.6	141.2	30	0.6	0.6
	697.8	23.2	46.4	69.6	92.8	116.0	I 39.2			
40	930.4	22.9	$45 \cdot 7$	68.6	91.4	114.3	137.2			
	1163.0	22.5	45.1	67.6	90.1	112.6	135.2		80°	
7900	22.2	44.4	66.6	88.8	111.0	133.2			
10	232.6	21.9	43.7	65.6	87.5	109.4	131.2			
20	465.2	21.5	43.1	64.6	86.1	107.6	129.2	5	0.0	
30	697.9	21.2	42.4	63.6	84.8	106.0	127.2	10	0.1	
40	930.5 1163.1	20.9 20.5	41.7	62.6 61.6	83.5 82.1	104.4	125.2 123.2	15 20	0.1 0.2	
50	1163.1	20.5	41.1	61.6	82.1	102.6	123.2	20	0.2 0.4	
8000		20.2	40.4	60.6	80.8	101.0	121.2	30	0.5	

Table 25.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10° EXTENT IN LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle Latitude of Quadrilateral.	Area in Square Miles.
0°	474653
5	472895
10	46763I
15	458891
20	446728
25	431213
30	412442
35	390533
40	365627
45	337890
50	307514
55	274714
60	239730
65	202823
70	164279
75	124400
80	83504
85	41924

©mithsoniam Tables.

142

Table 26.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1° EXTENT LATITUDE AND LONGITUDE,
[Derivation of table explained on pp. 1-lii.]

\begin{tabular}{|c|c|c|c|c|c|}
\hline Middle latitude of quadrilateral. \& Area in square miles. \& Middle latitude of quadrilateral. \& Area in square miles. \& Middle latitude of quadrilateral. \& Area in square miles

\hline $\bigcirc^{\circ} 00^{\prime}$ \& 4752.33 \& ${ }^{26}{ }^{\circ} 0^{\prime}$ \& 4282.50 \& $5^{20}{ }^{\circ} 0^{\prime}$ \& 2950.58

\hline - 30 \& 4752.16
4751.63 \& 26
27

00 \& 4264.51
4246.20 \& 5230 \& 2917.85
2884.88

\hline $\begin{array}{ll}1 & 00 \\ 1 & 30\end{array}$ \& 4751.63
4750.75 \& 27
27
27 \& 424.20
422.56 \& 53
53 \& 2851.68

\hline 200 \& 4749.52 \& 28 - \& 4208.61 \& 5400 \& 2818.27

\hline 230 \& 4747.93 \& 2830 \& 4189.33 \& 5430 \& 2784.62

\hline 300 \& 4746.00 \& 2900 \& 4169.34 \& 55 \& 2750.76

\hline 330 \& 4743.71 \& 2930 \& 4149.83 \& 5530 \& 2716.67

\hline 400 \& 4741.07 \& $30 \times$ \& 4129.60 \& 5600 \& 2682.37

\hline 430 \& 4738.08 \& 3030 \& 4109.06 \& 5630 \& 2647.85

\hline 50 \& 4734.74 \& 31.00 \& 4088.21 \& 57 \& ${ }^{26113.13}$

\hline 530 \& 4731.04 \& 3130 \& 4067.05 \& 5730 \& 2578.19

\hline 6 00 \& 4727.00 \& 3200 \& 4045.57 \& 58 00 \& 2543.05

\hline 630 \& 4722.61 \& 3230 \& 4023.79 \& 5830 \& 2507.70

\hline 7 - \& 4717.86 \& 3300 \& 4001.69 \& 59 -0 \& 2472.16

\hline 730 \& 4712.76 \& 3330 \& 3979.30 \& 5930 \& 2436.42

\hline 8 ¢ \& 4707.32 \& 34 O0 \& 3956.59 \& 6000 \& 2400.48

\hline 830 \& 4701.52 \& 3430 \& 3933.59 \& 6030 \& 2364.34

\hline $9 \bigcirc$ \& 4695.38 \& 3500 \& 3910.28
3886.67 \& 6100 \& 2338.02

\hline 930 \& 4688.89 \& 3530 \& 3886.67 \& 6130 \& 2291.51

\hline 1000 \& 4682.05 \& 36 00 \& 3862.76 \& 62 - \& 2254.82

\hline 1030 \& 4674.86 \& 3630 \& 3838.56 \& 6230 \& 2217.94

\hline 1100 \& 4667.32 \& 37 ¢0 \& 3814.06 \& 63 оo \& 2180.89

\hline 1130 \& 4659.43 \& 3730 \& 3789.26 \& 6330 \& 2143.66

\hline 1200 \& 4651.20 \& 38 - \& 3764.18 \& 64 -0 \& 2106.26

\hline 1230 \& 4642.63 \& 3830 \& 3738.80 \& 6430 \& 2068.68

\hline 13

I \& 4633.71 \& 3900 \& 3713.14
3687.18 \& 6500 \& 2030.94

\hline 1330 \& 4624.44 \& 3930 \& 3687.18 \& 6530 \& 1993.04

\hline 1400 \& 4614.82 \& $40 \sim$ \& 3660.95 \& 66 00 \& 1954.97

\hline 1430 \& 4604.87 \& 4030 \& 3634.42 \& 6630 \& 1916.75

\hline 1500 \& 4594.57 \& $41 \times$ \& 3697.62 \& 67 ¢ \&

\hline 1530 \& 4583.92 \& 4130 \& 3580.54 \& 6730 \& 1839.84

\hline 1600 \& 4572.94 \& 42∞ \& 3553.17 \& 68 - \& 180 r .16

\hline 1630 \& 4561.61 \& 4230 \& 3525.54 \& 6830 \& 1762.33

\hline 1700 \& 4549.94 \& 4300 \& 3497.62 \& 69 oo \& 1723.36

\hline 1730 \& 4537.93 \& 4330 \& 3469.44 \& 6930 \& 1684.24

\hline 1800 \& 4525.59 \& 440° \& 3440.98 \& 70 00 \& 1645.00

\hline 1830 \& 4512.90 \& 4430 \& 3412.26 \& 7030 \& 1605.62

\hline 1900
19 \& 4499.87 \& 45 \& 3383.27 \& 7100 \& 1566.10

\hline 1930 \& 4486.51 \& 4530 \& 3354.01 \& 7130 \& 1526.46

\hline 2000 \& 4472.81 \& 46 -0 \& 3324.49 \& 7200 \& 1486.70

\hline 2030 \& 4458.78 \& 4630 \& 3294.76 \& 7230 \& 1446.81

\hline $\begin{array}{ll}21 \\ 21 & 00 \\ & 30\end{array}$ \& 4444.4I \& 47 Oo \& 3264.68 \& 73 -0 \& 1406.81

\hline 2130 \& 4429.7 I \& 4730 \& 3234.39 \& 7330 \& 1366.69

\hline 2200 \& 4414.67 \& 48 - \& 3203.84 \& 74 00 \& 1326.46

\hline 2230 \& 4399.30 \& 4830 \& 3173.04 \& 7430 \& 1286.12

\hline 23
23
23 \& 4383.60 \& 49 oo \& 3141.99 \& 7500 \& 1245.68

\hline 233° \& 4367.57 \& 4930 \& 3110.69 \& 7530 \& 1205.13

\hline \& 4351.21 \& 5000 \& 3079.15 \& 76 00 \& 1164.49

\hline 2430
2500 \& 4334.52
4317.51 \& 50
50
50 \& 3047.37 \& 7630 \& 1123.75

\hline 2530 \& 431700.51
43 \& 51
51 \& 3015.34

2983.08 \& | 77 |
| :--- |
| 77 |
| 00 | \& 1082.91

\hline \& \& \& \& \& 1041.99

\hline
\end{tabular} LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles
$78^{\circ} 00^{\prime}$	1000.99	$82^{\circ} 00^{\prime}$	670.27	$86^{\circ} 0^{\prime}$	336.02
7830	959.90	8230	628.64	8630	294.08
79 \%	918.73	830	586.97	87 ¢	252.11
7930	877.49	8330	545.24	8730	210.12
80 -	836.18	8400		8800	168.12
8030	794.79	8430	46 I .66	8830	126.10
8100	753.34	8500	419.8 I	89 oo	84.07
8130	711.83	8530	377.93	8930	42.04

Smithsonian Tables.

Table 27.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
$0^{\circ} 00^{\prime}$	1188.10	$13^{\circ} 00^{\prime}$	1158.44	$26^{\circ} 00^{\prime}$	1070.64
-15	1188.08	1315	1157.29	2615	1068.40
030 045	1188.05 1188.00	1330 13	1156.12 1154.93	26 2645	1066.14 1063.86
100	1187.92	1400	1153.72	2700	1061.56
115	1187.82	1415	1152.48	2715	1059.24
130	1187.70	1430	1151.23	2730	1056.90
145	1187.56	1445	1149.95	2745	1054.54
200	1187.39	1500	1148.65	28 -	1052.16
215	1187.20	1515	1147.33	2815	1049.76
230	1186.99	1530	1145.99	2830	$1047 \cdot 34$
245	1186.76	1545	1144.63	2845	1044.90
300	1186.51	1600	1143.25	2900	1042.44
315	1186.24	1615	1141.84	2915	1039.97
330	1185.95	1630	1140.41	2930	1037.47
	1185.62	1645	1138.96	2945	1034.95
400	1185.28	1700	1137.50	$30 \times$	1032.41
415	1184.92	1715	1136.00	3015 30	1029.85
430	1188.53	1730	1134.49	3030	1027.27
445	1184.13	1745	1132.96	3045	1024.68
500	1183.70	1800	1131.41	3100	1022.06
$\begin{array}{ll}515 \\ 5 & \\ 50\end{array}$	1183.24 1182.77	1815	1129.83	3115	1019.43
5 5 45	1182.77 1182.28	18 18 15	1128.24 1126.62	31 31 31	1016.77 1014.10
6 -0	1181.76	1900	1124.98	3200	1011.40
615	1181.22	1915	1123.32	3215	1008.69
630	1180.66	1930	1121.64	3230	1005.96
645	1180.08	1945	1119.93	3245	1003.20
700	1179.48	2000	1118.21	3300	1000.43
715	1178.85	2015	1116.47	3315	997.64
730	1178.20	2030	1114.71	3330	994.83
745	1177.53	2045	1112.92	3345	992.00
8 о0	1176.84	2100	1111.11	3400	989.16
8 8 15	1176.13	2115	1109.28	3415	986.29
88	1175.39	2130	1107.44	3430	983.41
845	1174.63	2145	1105.57	3445	980.50
900	1173.86	2200	1103.68		
915 930	1173.06 1172.23	2215	1101.77	3515	974.64
930	1172.23	2230	1099.84	3530	971.68
945	1171.39	2245	1097.88	3545	968.70
1000	1170.52	2300	1095.91		
$\begin{array}{ll}10 & 15 \\ 10 & 30\end{array}$	1169.63	2315	1093.92	3615	962.68
1030	1168.73	2330	109 r .90	3630	959.65
1045	1167.80	2345	1089.87	3645	956.60
1100	1166.84	2400	${ }_{1087} 8.81$		
1115	1165.86	2415	1085.74	3715	950.43
$\begin{array}{ll}11 & 30 \\ 1145\end{array}$	1164.86	2430	1083.64	3730	$947.3{ }^{2}$
1145	1163.85	24 45	1081.52	3745	944.21
1200	1162.81	25 -0	1079.39		
1215	1161.75	2515	1077.23	3815	947.88
1230 1245	1160.67 1159.56	2530	1075.05	3830	934.71
1245	1159.56	2545	1072.85	3845	931.51

[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
$39^{\circ} 00^{\prime}$	928.29	$52^{\circ} 00^{\prime}$	737.65	$65^{\circ} 00^{\prime}$	507.74
3915	925.06	5215	733.57	6515	503.01
3930	$92 \mathrm{I}, 80$	5230	729.47	6530	498.26
3945	918.53	5245	$725 \cdot 36$	6545	493.51
40 0	915.25	5300	721.23	6600	488.75
4015	91.94	5315	717.08	665	483.97
4030	908.61	5330	712.93	6630	479.19
4045	905.27	5345	708.76	6645	474.40
4100	901.91	5400	704.57	6700	469.60
4115	898.54	5415	700.38	6715	464.78
4130	895.14	5430	696.16	6730	459.96
4145	891.73	5445	691.94	6745	455.13
4200	888.30	5500	687.70	68 00	450.29
4215	884.85	5515	683.44	68 15	$445 \cdot 45$
4230	88 I .39	5530	679.17	6830	440.59
4245	877.91	5545	674.89	6845	$435 \cdot 7^{2}$
4300	874.41	56 ¢	670.60	6900	430.84
4315	870.90	5615	666.29	6915	425.96
4330	867.37	5630	661.97	6930	421.06
4345	863.82	5645	657.64	6945	416.16
4400	860.25	5700	653.29	7000	417.25
4415	856.67	57.15	648.93	7015	406.34
4430	853.07	5730	$644 \cdot 55$	7030	4 OI .41
4445	849.46	5745	640.17	7045	396.47
4500	845.82	580	635.77	7100	391.53
4515	842.18	58 I5	$63 \mathrm{I} \cdot 36$	715	386.58
4530	838.51	5830	626.93	7130	381.62
4545	834.83	5845	622.49	7145	376.65
4600	831.13	5900	618.05	7200	37 I .68
4615	827.42	5915	6 F 3.59	7215	366.70
$46 \quad 30$ $46 \quad 45$	823.68 819.94	5930 59 95	609.11 604.62	7230 7245	361.71 356.71
4645	819.94	5945	604.62	7245	356.71
4700 47	8 I 6.18	6000	600.13	7300	351.71
4715	812.40	6015	595.62	7315	346.69
4730	808.60	6030	591.09	73 30	341.68
4745	804.79	6045	586.56	7345	336.65
4800	800.97	6100	582.01	7400	331.62
4815	797.13	$6 \mathrm{6I} 15$	577.45	7415	326.58
4830	793.27	6130	572.88	$\begin{array}{r}74 \\ 74 \\ \hline 15\end{array}$	321.53 316.48
4845	789.39	6 L 45	568.30	7445	316.48
4900	785.50	6200	563.71	7500	311.42
4915	78 I .60	6215	559.11	7515	306.36
4930	777.68	6230	554.49 5498	$\begin{array}{r}75 \\ 75 \\ \hline 15\end{array}$	301.28 296.21
4945	773.74	6245	549.86	7545	296.21
5000	769.79	6300	545.23	7600	291.12
5015	765.83	6315	540.58	$\begin{array}{lll}76 & 15 \\ 76 & \end{array}$	286.04
5030	761.85	6330	535.92	7630	280.94 275.84
5045	757.85	6345	53 L .25	7645	275.84
5100	753.84	6400	526.57	7700	270.73
5115	749.82	$\begin{array}{ll}64 & 15 \\ 64 & 30\end{array}$	521.88		265.62
	745.78 741.72	6430 6445	517.17 512.46	7730 7745	260.50 255.38

Table 27.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30^{\prime} EXTENT IN LATITUDE AND LONCITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
$78^{\circ} 00^{\prime}$	250.25	$82^{\circ} 00^{\prime}$	167.57	$86^{\circ} 00^{\prime}$	84.01
7815	245.12	8215	162.37	8615	78.76
7830	239.88	8230	157.16	8630	73.52
7845	234.83	8245	151.95	8645	68.27
7900	229.68	8300	146.74	8700	63.03
7915	224.53	8315	141.53	8715	57.78
7930 79	219.37	83 83	136.31	8730	52.53
7945	214.21	8345	131.09	8745	47.28
8000	209.05	8400	125.87	8800	42.03
8015	203.88	8415	120.64	8815	36.78
8030	198.70	8430	115.42	8830	31.53
8045	193.52	8445	110.18	8845	26.27
8100	188.34	8500	104.95	8900	21.02
8115	183.15	8515	99.72	8915	15.76
8130	177.96	8530	94.48	8930	10.51
8145	172.77	8545	89.25	8945	5.26

Emithbonian Tableg.

Table 28.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-14i.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.	Middle latltude of quadrilateral.	Area in square miles.
$0^{\circ} 07^{\prime} 30^{\prime \prime}$	297.02	$6^{\circ} 37^{\prime} 30^{\prime \prime}$	295.09	$13^{\circ} 07^{\prime} 30^{\prime \prime}$	289.47
- 1500	297.02	64500	295.02	131500	289.33
- 2230	297.02	65230	294.95	132230	289.18
- 3000	297.01	7000	294.87	133000	289.03
- 3730	297.01	70730	294.79	133730	288.88
- 4500	297.00	71500	294.71	134500	288.73
- 5230	296.99	72230	294.63	135230	288.58
10000	296.98	73000	294.55	140000	288.43
10730	296.97	73730	294.47	140730	288.28
11500	296.96	74500	294.39	141500	288.12
$\begin{array}{ll}1 & 22 \\ 1\end{array} 3^{\circ}$	296.94	75230	294.30	142230	287.96
13000	296.93	80000	294.21	143000	287.81
13730	296.91	8 8 0730	294.12	143730	287.65
14500	296.89	81500	294.03	144500	287.49
15230	296.87	82230	293.94	145230	287.33
2000	296.85	83000	293.85	150000	287.17
$\begin{array}{llll}2 & 07 & 30\end{array}$	296.82	83730	293.75	150730	287.00
21500	296.80	84500	293.66	15 1500	286.83
22230	296.77	85230	293.56	152230	286.67
23000	296.75	90000	293.47	$15 \quad 3000$	286.50
23730	296.72	90730	293.37	153730	286.33
2 2 4500	296.69	91500	293.27	154500	286.16
$\begin{array}{lll}2 & 52 & 30 \\ 3 & 00 & 00\end{array}$	296.66 296.63	$\begin{array}{lll}9 & 22 & 30 \\ 9 & 30 & 00\end{array}$	293.16 293.06	$\begin{array}{llll}15 & 52 & 30 \\ 16 & 00 & 00\end{array}$	285.99
30000	296.63	93000	293.06	160000	285.82
30730	296.60	93730	292.95	160730	285.64
$\begin{array}{llll}3 & 15 & 00 \\ 3 & 22 & 30\end{array}$	296.56	94500	292.85	161500	285.46
$\begin{array}{lll}3 & 22 & 30 \\ 3 & 30 & 00\end{array}$	296.53 296.49	9 9 10	292.74	162230	285.28
$33^{\circ} 00$	296.49	100000	292.63	163000	285.10
$\begin{array}{llll}3 & 37 & 30\end{array}$	296.45	$\begin{array}{llll}10 & 07 & 30\end{array}$	292.52	163730	284.92
$\begin{array}{llll}3 & 45 & 00 \\ 3 & 52\end{array}$	296.41	101500	292.41	164500	284.74
35230	296.36	102230	292.30	165230	284.56
4000	296.32	103000	292.19	170000	284.38
40730	296.28	Io 3730	292.07	170730	284.19
41500	296.23	104500	291.95	171500	284.00
42230	296.18	105230	291.83	172230	283.81
43000	296.13	11000	291.71	$17 \quad 3000$	283.62
43730	296.08	$\begin{array}{llll}11 & 07 & 30\end{array}$	291.59	173730	283.43
$\begin{array}{llll}4 & 45 \\ 4 & 52 & 30\end{array}$	296.03	$\begin{array}{llll}\text { II } & 15 & 00 \\ \text { II } & 22 & 30\end{array}$	291.47	174500	283.24
45230	295.98	$\begin{array}{llll}11 & 22 & 30\end{array}$	291.34	175230	283.05
50000	295.93	II 3000	291.22	180000	282.86
50730	295.87	113730	291.09	180730	282.66
$\begin{array}{llll}5 & 15 & 00 \\ 5 & 22 & 30\end{array}$	295.81	114500	290.96	181500	282.46
$\begin{array}{llll}5 & 22 & 30 \\ 5 & 30 & 00\end{array}$	295.75 295.69	$\begin{array}{lll}11 & 52 & 30 \\ \text { I2 } & 00 & 00\end{array}$	290.83	$18 \quad 2230$	282.26
53000	295.69	120000	290.70	183000	282.06
$\begin{array}{llll}5 & 37 & 30\end{array}$	295.63	120730	290.57	183730	281. 86
$\begin{array}{llll}5 & 45 & 0 \\ 5 & 52 & 30\end{array}$	295.57	121500	290.44	184500	281. 66
$\begin{array}{llll}5 & 52 & 30 \\ 6 & 00 & 00\end{array}$	295.51	122230	290.30	185230	28 I .45
60000	295.44	123000	290.17	19000	281.25
$\begin{array}{llll}6 & 07 & 30\end{array}$	295.37	123730	290.03	190730	281.04
$\begin{array}{llll}6 & 15 & 00 \\ 6 & 22 & 30\end{array}$	295.31	124500	289.89	191500	280.83
$\begin{array}{llll}6 & 22 & 30 \\ 6 & 30 & 00\end{array}$	295.24	125230	289.75	192230	280.62
63000	295.17	130000	289.61	193000	280.41

[Derívation of table explained on pp. 1-lii.]

Míddle latitude of quadrilateral.	Area in Square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
$19^{\circ} 37^{\prime} 30^{\prime \prime}$	280.20	$26^{\circ} 07^{\prime} 30^{\prime \prime}$	267.38	$32^{\circ} 37^{\prime} 30^{\prime \prime}$	251.15
194500	279.99	26 I 500	267.10	324500	250.80
195230	279.77	$26 \quad 2230$	266.82	$\begin{array}{llll}32 & 52 & 30\end{array}$	250.45
200000	279.55	$26 \quad 30$ 00	266.54	33000	250.11
200730	279.34	263730	266.25	$33 \bigcirc 730$	249.76
201500	279.12	264500	265.97	331500	249.41
202230	278.90	$26 \quad 5230$	265.68	332230	249.06
2030 0	278.68	2700	265.39	33300	248.71
203730	278.46	270730	265.10	333730	248.36
204500	278.23	271500	264.81	334500	248.00
205230	278.00	272230	264.52	335230	247.65
$2 \mathrm{I} \times 0$	277.78	273000	264.23	3400	247.29
210730	277.55	273730	263.93	340730	246.93
211500	277.32	274500	263.64	341500	246.57
212230	277.09	275230	263.34	342230	246.21
213000	276.86	28000	263.04	343000	245.85
213730	276.63	280730	262.74	343730	245.49
214500	276.39	$\begin{array}{llll}28 & 15 & 00\end{array}$	262.44	3445 00	245.13
215230	276.16	$28 \quad 2230$	262.14	$\begin{array}{lll}34 & 52 & 30\end{array}$	244.76
22000	275.92	$28 \quad 3000$	261.84	35 00 00	244.40
$\begin{array}{llll}22 & 07 & 30\end{array}$	275.68	$\begin{array}{llll}28 & 37 & 30\end{array}$	261.53	350730	244.03
221500	275.44	284500	261.23	351500	243.66
$22 \begin{array}{lll}22 & 30\end{array}$	275.20	285230	260.92	$35 \quad 2230$	243.29
$22 \quad 30 \quad 00$	274.96	290000	260.61	353000	242.92
$\begin{array}{llll}22 & 37 & 30\end{array}$	274.72	290730	260.30	353730	242.55
224500	274.47	291500	259.99	354500	242.18
$\begin{array}{llll}22 & 52 & 30\end{array}$	274.22	292230	259.68	355230	241.80
230000	273.98	293000	259.37	360000	24 I .43
230730	273.73	293730	259.05	360730	241.05
$\begin{array}{llll}23 & 15 & 00 \\ 23 & 22 & 30\end{array}$	273.48	29 29 25	258.74	$\begin{array}{llll}36 & 15 & 00\end{array}$	240.67
$\begin{array}{llll}23 & 22 & 30\end{array}$	273.23	295230	258.42	$36 \quad 2230$	240.29
$233^{\circ} 0$	272.98	30000	258.10	$36 \quad 3000$	239.91
233730	272.72	$\begin{array}{llll}30 & 07 & 30\end{array}$	257.78	$\begin{array}{llll}36 & 37 & 30\end{array}$	239.53
$\begin{array}{llll}23 & 45 & 00 \\ 23 & 52 & 30\end{array}$	272.47	$\begin{array}{llll}30 & 15 & 0 \\ 30 & 22\end{array}$	257.46	364500	239.15
$\begin{array}{lll}23 & 52 & 30 \\ 24 & 00 & 00\end{array}$	272.21	302230	257.14	$36 \quad 5230$	${ }^{2} 38.77$
240000	271.95	$30 \quad 3000$	256.82	370000	238.38
240730	271.69	303730	256.49	$\begin{array}{lll}37 & 07 & 30\end{array}$	237.99
$\begin{array}{llll}24 & 15 & 50 \\ 24 & 22 & 30\end{array}$	271.44	304500	256.17	$\begin{array}{lll}37 & 1500\end{array}$	237.61
$24 \quad 2230$	271.17	305230	255.84	372230	237.22
243000	270.91	310000	255.52	$37 \quad 3000$	236.83
243730	270.65	31 O7 30	255.19	$\begin{array}{lll}37 & 37 & 30\end{array}$	236.44
244500	270.38	31.1500	254.86	374500	236.05
245230	270.1 I	312230	254.53	375230	235.66
$25 \infty 0$	269.85	313000	254.19	$38 \quad 00$	235.26
250730	269.58	313730	253.86	380730	234.87
251500	269.31	314500	253.53	38	234.47
$\begin{array}{llll}25 & 22 & 30 \\ 25 & 30 & 00\end{array}$	269.04 268.76	$\begin{array}{llll}31 & 52 & 30 \\ 32 & 00 & 0\end{array}$	253.19 252.85	$\begin{array}{lll}38 & 22 & 30 \\ 38 & 30\end{array}$	234.07
253000	268.76	320000	252.85	$38 \quad 3000$	233.68
253730	268.49	320730	252.51	383730	233.28
254500	268.21	$\begin{array}{llll}32 & 15 & 00 \\ 32 & \end{array}$	252.17	384500	232.88
$\begin{array}{llll}25 & 52 & 30 \\ 26 & 00 & 00\end{array}$	267.94	$\begin{array}{llll}32 & 22 & 30\end{array}$	251.83	$\begin{array}{llll}38 & 52 & 30 \\ 30 & 0\end{array}$	232.48
260000	267.66	323000	251.49	39000	232.07

[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles
$39^{\circ} 07^{\prime} 30^{\prime \prime}$	231.67	$45^{\circ} 37^{\prime} 30^{\prime \prime}$	209.17	$52^{\circ} 07^{\prime} 30^{\prime \prime}$	183.90
39 I 500	231.27	454500	208.71	521500	183.39
392230	230.86	455230	208.25	$\begin{array}{llll}52 & 22 & 30\end{array}$	182.88
393000	230.45	460000	207.78	523000	182.37
393730	230.04	$46 \quad 0730$	207.32	523730	18 I .85
394500	229.63	46 I 500	206.86	524500	181.34
395230	229.22	462230	206.39	525230	180.82
400000	228.81	$46 \quad 3000$	205.92	530000	180.31
400730	228.40	463730	205.45	530730	179.79
401500	227.99	464500	204.99	531500	179.27
402230	$227 \cdot 57$	$46 \quad 5230$	204.52	$\begin{array}{lll}53 & 22 & 30\end{array}$	178.75
403000	227.15	470000	204.05	533000	178.23
403730	226.73	$\begin{array}{llll}47 & 07 & 30\end{array}$	203.57	533730	177.71
404500	226.32	471500	203.10	53.4500	177.19
$40 \quad 5230$	225.90	472230	202.63	$535^{2} \quad 30$	176.67
410000	225.48	473000	202.15	540000	176.14
410730	225.06	473730	201.67	540730	175.62
411500	224.64	47450	201.20	541500	175.10
412230	224.21	$47 \quad 5230$	200.72	542230	174.57
413000	223.79	480000	200.24	543000	174.04
413730	223.36	480730	199.76	$54 \quad 3730$	173.51
414500	222.93	48 15 00	199.28	544500	172.99
$4 \mathrm{4} \quad 5230$	222.50	482230	198.80	545230	172.46
420000	222.08	$48 \quad 3000$	198.32	550000	171.93
420730	221.65	483730	197.83	550730	171.39
42 I 500	221.21	484500	197.35	551500	170.86
422230	220.78	$48 \quad 5230$	196.86		170.33
423000	220.35	490000	196.38	553000	169.79
423730	219.91	490730	195.89	553730	169.26
424500	219.48	491500	195.40	554500	168.72
425230	219.04	492230	194.91	$555^{2} 30$	168.19
430000	218.60	493000	194.42	560000	167.65
430730	218.16	4937.30	193.93	560730	167.11
431500	217.73	494500	193.44	561500	166.57
432230	217.28	495230	192.94	562230	166.03
433000	216.84	500000	192.45	563000	165.49
$\begin{array}{lll}43 & 37 & 30 \\ 43 & 45 & 00\end{array}$	216.40	$\begin{array}{llll}50 & 07 & 30\end{array}$	191.95	563730	164.95
43 43 43 42	215.96	$\begin{array}{llll}50 & 15 & 50 \\ 50 & 22 & 30\end{array}$	191.46	56.4500	164.45
$\begin{array}{llll}43 & 52 & 30 \\ 44 & 00 & 00\end{array}$	215.51 215.06	502230	190.96	56	163.87
44 -	215.6	503000	190.46	57000	163.32
440730	214.61	503730	189.96	570730	162.78
$\begin{array}{llll}44 & 15 & 00 \\ 44 & 22 & 30\end{array}$	214.17	504500	189.46	$\begin{array}{llll}57 & 15 & 00\end{array}$	162.23
$\begin{array}{llll}44 & 22 & 30 \\ 44 & 30 & 00\end{array}$	213.72	505230	188.96	$\begin{array}{llll}57 & 22 & 30\end{array}$	161.68
443000	213.27	510000	188.46	$57 \quad 3000$	161.14
443730	212.82	510730	187.96	573730	160.59
444500	212.37	51 I5 00	187.46	574500	160.04
$\begin{array}{llll}44 & 52 & 30 \\ 45 & \infty & 00\end{array}$	211.91 211.46	$\begin{array}{llll}51 & 22 & 30 \\ 51 & 30\end{array}$	186.95	575820	159.49
45000	211.46	513000	186.45	580000	158.94
450730	211.00	513730	185.94	580730	
$\begin{array}{llll}45 & 15 & 00 \\ 45 & 22 & 30\end{array}$	210.55 210.09	$\begin{array}{ll}51 & 4500 \\ 51 & 52\end{array}$	185.43	$\begin{array}{llll}58 & 15 & 00 \\ 58 & 22 & \end{array}$	157.84
45 45 45	210.09 209.63	$\begin{array}{lll}51 & 52 & 30 \\ 52 & 00 & 0\end{array}$	184.92	58.2230	157.29
453000	209.63	520000	184.41	$58 \quad 3000$	156.73

[Derivation of table explained on pp. l-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.
$58^{\circ} 37^{\prime} 30^{\prime \prime}$	156.18	$65^{\circ} 07^{\prime} 30^{\prime \prime}$	126.34	$7 \mathrm{I}^{\circ} 37^{\prime} 30^{\prime \prime}$	94.78
584500	155.62	651500	125.75	71450	94.16
$\begin{array}{llll}58 & 52 \\ 59 & 30\end{array}$	155.07 154.51	65 65 65	125.16 124.57	715230	93.54
590000	154.51	653000	124.57	72000	92.92
590730	${ }^{1} 53.96$	653730	123.97	720730	92.30
591500	153.40	65450	123.38	$\begin{array}{llll}72 & 15 & 0 \\ 72\end{array}$	91.68
59 59 2230	$\begin{array}{r}152.84 \\ \hline 152.28\end{array}$	655230 66000	122.78 $\mathbf{1 2 2 . 1 9}$	72 722 720	91.05 90.43
5930×0	152.28		122.19	723000	90.43
593730	151.72	660730	121.59	$\begin{array}{llll}72 & 37 & 30\end{array}$	89.80
594500	151.16	66 66 66	120.99	7245 720	88.18
59 60 60	150.60 150.03	$\begin{array}{lll}66 & 22 & 30 \\ 66 & 30 & 00\end{array}$	120.40 119.80	$\begin{array}{llll}72 & 52 & 30 \\ 73 & 00 & 00\end{array}$	88.55 87.93
600730	149.47	663730	119.20	73 0730 15	87.30
601500	148.91	6645%	118.60	731500	86.67
$\begin{array}{llll}60 & 22 & 30 \\ 60 & 30 & 00\end{array}$	148.34 147.77	$\begin{array}{llll}66 & 52 & 30 \\ 67 & 00 & 00\end{array}$	118.00 117.40	73 7322 73 30	86.05 85.42
6030	147.7				
603730	147.21	670730	116.80	73 37 30	84.79
6045 \%	146.64	671500	116.20	734500	84.16
$\begin{array}{llll}60 & 52 & 30 \\ 61 & 00 & 00\end{array}$	146.07 145.50	$\begin{array}{llll}67 & 22 & 30 \\ 67 & 30\end{array}$	115.59 114.99	$\begin{array}{llll}73 & 52 \\ 74 & 30 \\ 00\end{array}$	83.53 82.91
	145.50				
610730	144.93	673730	114.39	740730	82.28
611500	144.36	674500	113.78	74 15 0 74	81.65
$\begin{array}{llll}61 & 22 & 30\end{array}$	143.79	$\begin{array}{lll}67 & 52 \\ 68 & 30\end{array}$	113.18	742230 74	$8 \mathrm{8r.01}$
613000	143.22	68 00 0	112.57	743000	80.38
613730	142.65	68 07 68 8 15	111.97	743730	79.75
614500	142.08	68 68 68 15	111.36	74	79.12
$\begin{array}{lll}61 & 52 \\ 62 & 30 \\ & 00\end{array}$	141.50	$\begin{array}{llll}68 & 22 & 30 \\ 68 & 30\end{array}$	110.76 10.15	$\begin{array}{llll}74 & 52 \\ 75 \\ \\ 00\end{array}$	78.49
62000	140.93	683000	110.15	750000	77.86
620730	140.35	683730	109.54	750730	77.22
621500	139.78	68 685	108.93	$\begin{array}{llll}75 & 15 \\ 75 & 0 \\ 75\end{array}$	76.59
622230	139.20	$\begin{array}{llll}68 & 52 & 30 \\ 69 & 00 & 00\end{array}$	108.32 107.71	75 750	75.95
623000	138.62	690000	107.71	753000	75.32
623730	138.04	690730	107.10	753730	74.69
624500	137.47	$\begin{array}{lll}69 & 15 & 0 \\ 69 & 22\end{array}$	106.49	75 75 75 50	74.05
62 62 63	136.89 $\mathbf{1 3 6 . 3 1}$	$\begin{array}{lll}69 & 22 & 30 \\ 69 & 30 & 00\end{array}$	105.88 105.27	$\begin{array}{llll}75 & 52 \\ 76 \\ 760 & 30\end{array}$	73.42 72.78
630000	136.31	693000	105.27	76 -	
630730	135.73	693730	104.65°	760730	72.14
${ }_{63} 12500$	135.15	694500 69	104.04	$\begin{array}{llll}76 & 15 & 00 \\ 76 & 22\end{array}$	71.51
63 63 63 30	134.56 133.98	$\begin{array}{lll}69 & 52 & 30 \\ 70 & 00 & 00\end{array}$	103.43 102.81	$\begin{array}{llll}76 & 22 & 30 \\ 76 & 30 & 00\end{array}$	70.87 70.24
633000	133.98	7000	102.81	7630	
633730	133.40	70.730	102.20	763730	69.60
634500	132.81	701500	101.59	76 45 76 76 0	63.96
$\begin{array}{llll}63 & 52 \\ 64 & 30 \\ 000\end{array}$	132.23 $13^{1.64}$	$\begin{array}{llll}70 & 22 & 30 \\ 70 & 30 & 00\end{array}$	100.97 100.35	$\begin{array}{llll}76 & 52 \\ 77 & 00 \\ & 30\end{array}$	18.32 67.68
					67.04
$\begin{array}{llll}64 & 07 & 30 \\ 64 & 15 & 00\end{array}$	131.06 130.47	70 70 70	99.74 9.12	771500 77	66.41
642230	129.88	705230	98.50	$\begin{array}{ll}77 & 22 \\ 77 & 30\end{array}$	65.77
6430 oo	129.29	71000	97.88	773000	65.13
643730	128.70	710730	97.26	773730	64.49
644500	128.12	71 15 7150 150	96.65	$\begin{array}{ll}77 & 45 \\ 77 \\ 50\end{array}$	63.85 63.20
$\begin{array}{llll}64 & 52 & 30 \\ 65 & 00 & 00\end{array}$	127.53 126.94	$\begin{array}{llll}71 & 22 & 30 \\ 71 & 30 & 00\end{array}$	96.03 95.41	$\begin{array}{llll}77 & 52 & 30 \\ 78 & 0 & 0\end{array}$	63.20 62.56
650000	126.94	7130			

Table 28.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.
$78^{\circ} 07^{\prime} 30^{\prime \prime \prime}$	61.92	$82^{\circ} 07^{\prime} 30^{\prime \prime}$	41.24	$86^{\circ} 07^{\prime} 30^{\prime \prime}$	20.35
78150	61.28	821500	40.59	861500	19.69
$\begin{array}{llll}78 & 22 & 30\end{array}$	60.64	822230	39.94	862230	19.04
$78 \quad 3000$	60.00	823000	39.29	863000	18.38
$78 \quad 3730$	59.35	823730	38.64	863730	17.72
784500	58.71	824500	37.99	864500	17.07
785230	58.06	825230	37.34	865230	16.41
790000	57.42	830000	36.69	870000	15.76
79073°	56.78	830730	36.03	870730	15.10
791500	56.13	831500	$35 \cdot 38$	871500	14.44
792230	55.49	83 8 8 2230	34.73	872230	13.79
793000	54.84	833000	34.08	873000	13.13
793730	54.20	833730	33.42	873730	12.48
794500	53.55	834500	32.77	874500	11.82
79 89 5^{32}	52.91	83 8 8 $5^{2} 300$	32.12	875230 8800	11.16
800000	52.26	840000	31.47	880000	10.51
800730	51.62	840730	30.81	880730	9.85
8015	50.97	841500	30.16	881500	9.20
80 80 80 80	50.32 49.68	84 84 84 8	29.51 28.86	88 88 88 30	8.54 7.88
803000	49.68	843000	28.86	88300	7.88
$\begin{array}{lll}80 & 37 & 30 \\ 80\end{array}$	49.03	84 84 84 4	28.20	88 88 88 3^{30}	7.22
$\begin{array}{llll}80 & 45 & 00 \\ 80 & 52 & 30\end{array}$	48.38 47.73	84 84 84 84 85	2.54 26.89	88 88 88 58	6.57 5.91
8 r 000	47.08	850000	26.24	890000	5.26
8 81 0730	46.44	850730	25.58	$89 \bigcirc 730$	4.60
81 81500 81	45.79	85 85 85	24.93	891500	3.94
81 81 81 81	45.14 44.49	85.2230 85 80	24.27	89 89 89 3^{30}	3.28
813000	44.49	853000	23.62	893000	2.63
81 81 81 37	43.84	853730	22.97	893730	1.97
$\begin{array}{lll}81 & 45 & 00 \\ 81 & 52 & 30\end{array}$	43.19 42.54	854500 85 85	22.31 21.66	89 89 89	1.31 0.66
81 82 800	42.54 4.	- 850030	21.00		

Smithsonian Tables.
[Derivation of table explained on pp. 1-iii.]

Middle latitude of quadrilateral	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.
$0^{\circ} 05^{\prime}$	132.01	$8^{\circ} 45^{\prime}$	130.51	$17^{\circ} 25^{\prime}$	126.11
- 15	132.01	855	130.46	1735	126.00
$\bigcirc 25$	132.01	905	130.40	1745	125.88
- 35	132.00	915	130.34	1755	125.77
- 45	132.00	925	130.28	1805	125.65
- 55	131.99	935	130.22	1815	125.54
105	131.99	945	130.15	1825	125.42
115	131.98	955	130.09	1835	125.30
125	131.97	10.5	130.02	1845	125.18
135	131.96	1015	129.96	1855	125.06
145	131.95	1025	129.89	1905	124.94
155	131.94	1035	129.82	1915	124.81
205	131.93	1045	129.76	1925	124.69
215	131.91	1055	129.68	1935	124.56
225 235	131.90	1105	129.61	1945	124.44
235	131.88	1115	129.54	1955	124.31
245	131.86	1125	129.47	20.5	124.18
255	${ }_{131.84}$	1135	129.39	2015	124.05
$\begin{array}{ll}3 & 05 \\ 3 & 15\end{array}$	131.82	1145	129.32	2025	123.92
315	131.80	1155	129.24	2035	123.79
325	131.78	1205	129.16	2045	123.66
335	131.76	1215	129.08	2055	123.52
$\begin{array}{ll}3 & 45 \\ 3 & 55\end{array}$	131.74 131.71	$\begin{array}{ll}12 & 25 \\ 12 & 35\end{array}$	129.00 128.92	$\begin{array}{ll}21 & 05 \\ 21\end{array}$	123.39 123.25
405	131.68	1245	128.84		
415	131.66	1255	128.76	2135	122.98
425	131.63	1305	128.67	2145	122.84
435	137.60	1315	128.59	2155	12270
445	131.57	1325	128.50	2205	122.56
455	131.54 131.50 135	13 135 13	128.41	2215	122.42
505 515	131.50 131.47	1345 1355	128.33 128.24	2225 2235	122.28 122.13
525	131.44	1405	128.14	2245	121.99
535	131.40	1415	128.05	2255	121.84
545	131.36	1425	127.96	2305	121.69
555	131.33	1435	127.87	2315	121.55
	131.29	1445	127.77	2325	121.40
6115 625	131.25 131.21 13120	1455	127.67	2335	121.25
6125 635	131.21 131.16	$\begin{array}{ll}15 & 05 \\ 15 & 15\end{array}$	127.58 127.48	2345 2355	121.10
645	131.12	1525	127.38		
655	131.07	1535	127.28	$\begin{array}{lll}24 & 5 \\ 24 & 15\end{array}$	120.76
705	131.03	1545	127.18	2425	120.48
715	130.98	1555	127.08	2435	120.33
725	130.93	1605	126.98	2445	120.17
735 745	130.88 130.84 130.78	1615	126.87	2455	120.01
745 755	130.84 130.79	1625 1635	126.77 126.66	25 25 25	119.85 119.69
8 -5	130.73	1645			
$\begin{array}{ll}8 & 15 \\ 8 & 25\end{array}$	130.68	1655	126.44	25 25 25	119.53 119.37
8 8 8	130.63 130.57	1705	126.33	2545	119.21
835	130.57	1715	126.22	2555	119.04

Table 29.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10^{\prime} EXTENT IN LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.
$26^{\circ} 05^{\prime}$	118.87	$34^{\circ} 45^{\prime}$	108.94	$43^{\circ} 25^{\prime}$	96.50
2615	188.71 118.54	3455	108.73	4335	96.24
2625 2635	118.54 118.37	3505 3515	108.51 108.29	4345 43	95.98
2645	188.21	3525	108.07	4405	95.45
26 27 27	118.04 117.87 117.69	35 35 35	107.85	4415	95.19
27 27 75	117.87 117.69	3545 3555	107.63 107.45	4425	94.92
	117.69			4435	94.65
2725	117.52	3605	107.19	4445	94.38
27 27 275	117.35 117.17	3615 36 15	106.96	4455	94.11
2745 27	117.17 116.99	3625 36	106.74 106.51	4505	93.84
2755			106.51		
2805	116.82	3645	106.29		93.30
2815	116.64	3655	106.06	4535	93.03
28 28 28	116.46	3705	105.83	4545	92.76
2835	116.28	3715	105.60	4555	92.48
2845	116.10	3725	105.37	$46 \mathrm{o5}$	92.21
2855	115.92	3735	105.14	4615	91.94
29.5	115.73	3745	104.98	4625	91.66
29 I5	115.55	3755	104.68	4635	9 T .38
2925	115.37		104.44	4645	9 9 .10
2935	115.18	38 38 8 15	104.21	4655	90.82
2945 2955	${ }^{114.99}{ }^{114.81}$	3825 38	103.97 103.74	47 47 47	90.55 90.27
3005	114.62	$3^{88} 45$	103.50	4725	89.99
3015	114.43	$3^{8} 55$	103.26	4735	89.70
3025	114.24	3905	103.02	4745	89.42
3035	114.04	3915	102.78	4755	89.14
3045	113.85	3925	102.54	4805	88.85
3055	113.66	3935	102.30	4815	88.57
31.05	113.47	3945	102.06	4825	88.28
3115	113.27	3955	101.82	4835	88.00
3125	113.07	4005	101.57	4845	87.71
3135	112.88	4015	101. 33	4855	87.42
3145	112.68	4025	101.08	49.5	87.13
3155	112.48	4035	100.83	49 I 5	86.84
3205	112.28	4045	100.59	4925	86.55
3215	112.08	4055	100.34	4935	86.26
3225	111.87	415	100.09	4945	85.97
$3^{2} 35$	111.67	4115	99.84	4955	85.68
3245	111.47	4125	99.59	50.5	85.39
3255	111.26	4135	99.33	5015	85.09
3305 3315	111.06 110.85	41 415 45	99.08 98.83	5025 50	84.80 84.50
	110.64		98.57		84.21
3335	110.43	4215	98.32	5055	83.91
3345	110.22	4225	98.06	5105	83.61
3355	110.01	4235	97.80	515	83.31
3405	109.80		97.55		83.01
3415	109.59	4255	97.29	5135	83.71
3425	109.37	4305	97.03 96.77	51 515 59	82.41 82.11
3435	109.16.	4315	96.77	5155	82.11

table 29.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
$52^{\circ} 05^{\prime}$	8 I .8 s	$60^{\circ} 45^{\prime}$	65.17	$69^{\circ} 25^{\prime}$	46.97
5215	8 I .51	6055	64.84	6935	46.60
5225	$8 \mathrm{8r} 20$	6105	64.50	6945	46.24
5235	80.90	6115	64.16	6955	45.88
5245	80.60	6I 25	63.82	7005	45.51
5255	80.29	6I 35	63.48	70.15	45.15
5305	79.98	6145	63.14	$70 \quad 25$	44.78
5315	79.68	6155	62.80	7035	44.42
5325	79.37	6205	62.46	7045	44.05
5335	79.06	6215	62.12	7055	43.69
5345	78.75	6225	61.78	7105	43.32
5355	78.44	6235	61.44	7115	42.95
5405	78.13	6245	6 I .10	7125	42.58
5415	77.82	6255	60.75	7135	42.22
$\begin{array}{lll}54 & 25 \\ 54 & 35\end{array}$	77.51	63 63	60.41	7145	41.85
5435	77.19	6315	60.06	7155	41.48
5445	76.88	6325	59.72	72 '05	41.1 I
5455	76.57	6335	59.37	7215	40.74
55 55	76.25	6345	59.03	7225	40.37
5515	75.94	6355	58.68	7235	40.00
5525	75.62	6405	58.33	7245	39.63
55 55 55	75.30	$\begin{array}{lll}64 & 15 \\ 64 & 25\end{array}$	57.99	7255	39.26
5545	74.99	6425 64	57.64	7305	38.89
5555	74.67	6435	57.29	7315	38.52
5605	74.35		56.94	7325	$3^{8.15}$
$\begin{array}{lll}56 & 15 \\ 56 & 25\end{array}$	74.03 73.71	64 65	56. 59	7335	37.78
5625	73.71	6505	56.24	7345	37.41
5635	73.39	6515	55.89	7355	37.03
5645	73.07	$65 \quad 25$	55.54	7405	36.66
5655	72.75	6535	55.19	7415	36.29
57 57	72.43	6545	54.83	74125	35.91
5715	72.10	6555	54.48	7435	35.54
5725	71.78	6605	54.13	7445	35.17
5735	71.46	6615	53.78	7455	34.79
5745	71.13	6625	53.42	7505	34.42
5755	70.80	6635	53.06	7515	34.04
5805	70.48	6645	52.71	7525	33.66
5815	70.15	6655	52.35	7535	33.29
58 58 58	69.82 60.49	6705	52.00	7545	32.91
5035	69.49	6715	5 I .64	7555	32.53
5845	69.17	6725	51.28	7605	32.16
5855	68.84	6735	50.93	7615	3 I .78
59 59 15	68.51 68.18	6745 6755	50.57	7625	31.40
5915	68.18	6755	50.21	7635	31.03
5925	67.84	6805	49.85	7645	30.65
5935	67.51	6815	49.49	7655	30.27
5945 59	67.18	6825	49.13	7705	29.89
5955	66.85	6835	48.77	7715	29.51
6005	66.51	6845	48.41	7725	
6015	66.18	6855	48.05	7735	28.76
60 60	65.84	6905	47.69	7745	28.37
6035	65.51	6915	$47 \cdot 33$	7755	27.99

LATITUDE AND LONCITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
$78^{\circ} 05^{\prime}$	27.62	$82^{\circ} 05^{\prime}$	18.43	$86^{\circ} 05^{\prime}$	9.14
$78 \times$	27.24	82 I 5	18.04	8615	8.75
7825	26.85	8225	17.65	8625	8.36
7835	26.47	8235	17.27	8635	7.97
7845	26.09	8245	16.88	8645	7.59
$78 \quad 55$	25.71	8255	16.50	8655	7.20
7905	25.33	8305	16.11	8705	6.81
7915	24.95	8315	15.73	8715	6.42
7925	24.57	8325	15.34	8725	6.03
7935	24.18	8335	14.95	8735	5.64
7945	23.80	8345	14.57	8745	5.25
7955	23.42	8355	14.18	8755	4.86
	23.04		13.79	8805	4.47
8015	22.65	8415	13.40	88 15	4.09
8025	22.27	8425	I 3.02	8825	3.70
8035	21.89	8435	12.63	8835	$3 \cdot 31$
	21.50		12.24	8845	2.92
8055	21.12	8455	11.86	8855	2.53
8105 815	20.73	8505	1 I .47	895	2.14
8115	20.35	8515	11.08	8915	1.75
8125	19.97	8525	10.69	8925	1.36
8135	19.58	8535	10.30	8935	0.97
81 815 815	19.20 18.81	85 8555	9.92 9.53	89 89	0.58
81 55	18.81	8555	9.53	8955	0.19

Smithsonian Tables.

TAbLE 30.
DETERMINATION OF HEICHTS BY THE BAROMETER.
Formula of Babinet.

$$
\begin{gathered}
Z=C \frac{B_{0}-B}{B_{0}+B} \\
C(\text { in feet })=52494\left[1+\frac{t_{0}+t-64}{900}\right]-\text { English Measures. } \\
C(\text { in metres })=16000\left[1+\frac{2\left(t_{0}+t\right)}{1000}\right]-\text { Metric Measurès. }
\end{gathered}
$$

In which $Z=$ Difference of height of two stations in feet or metres.
$\boldsymbol{B}_{\mathrm{o}}, \boldsymbol{B}=$ Barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.
$t_{0}, t=$ Air temperatures at the lower and upper stations respectively.
Values of \mathbf{C}.
ENGLISH MEASURES.

$\frac{1}{2}\left(t_{0}+t\right)$.	$\log C$.	c.
F.		Feet.
10°	4.69834	49928
15	.70339	50511
20	. 70837	51094
25	.71330	51677
30	.71818	52261
35	4.72300	52844
40	. 72777	53428
45	.73248	54011
50	.73715	54595
55	.74177	55178
60	4.74633	55761
65	.75085	56344
70	.75532	56927
75	. 75975	57511
80	.76413	58094
85	4.76847	58677
90	.77276	59260
95	.77702	59844
100	.78123	60427

METRIC MEASURES.

$\frac{1}{2}\left(t_{0}+t\right)$.	$\log C$.	C.
C.		Metres.
-10°	4.18639	15360
-8	. 19000	15488
- 6	. 19357	15616
-4	.19712	15744
-2	. 20063	15872
0	4.20412	16000
+2	. 20758	16128
4	.21101	16256
6 8	.21442 .21780	16384 16512
8	.21780	
10	4.22115	16640
12	. 22448	16768
14	. 22778	16896
16	. 23106	17024
18	. 23431	17152
20	4.23754	17280
22	. 24075	17408
	. 24393	17536
26	.24709	17664
28	. 25022	17792
30	4.25334	17920
32	. 25643	18048
34	. 25950	18176
36	. 26255	18304

Gmithsonian Tables.

MEAN REFRACTION．

	Refraction．			Refrac	ction．		Refra	tion．		Refra	ction．	苞第苞	Refra	tion．
	，＂	＂						${ }_{5.3}^{\prime \prime}$			$\begin{array}{\|c\|} \hline 1 \\ x .5 \\ \hline \end{array}$	$\left[\begin{array}{l} 42 \\ 43 \end{array}\right.$		$\begin{aligned} & 111 \\ & 2.2 \\ & 2.1 \end{aligned}$
\bigcirc	34 54．I		70	719.7		14.	347.4		280					
10	3249.2	124.9 16.9	10	710.5	$\begin{aligned} & 9.2 \\ & 8.8 \end{aligned}$	20	$\frac{342.1}{}$		20	146．2			6 t .8	
20	3052.3	116.9 108.8	20	71.7		40	$\underline{337.0}$	$\begin{aligned} & 5 \cdot 3 \\ & 5 \cdot 1 \end{aligned}$	40	145.3	$\text { I. } 4$	$\frac{43}{44}$	59.7	
30	293.5	108.8 roc．	30	653.3	8.4	150	332.1	4.9 4.7	290	1		45	57.7	2.02.050
40 50	2722.7 2549	92.9	40	645.1 637.2	7.9	20	327.4	4.5	20	142.4	$\begin{aligned} & 1.5 \\ & x .4 \end{aligned}$		55.7	
10	$\frac{2549.6}{24}$	85.2	8 50	$\frac{637.2}{629.6}$	7.6	40	322.9		40	141.0	$\begin{aligned} & \mathrm{x} .4 \\ & \mathrm{x} .3 \end{aligned}$	$\frac{46}{47}$	53.8	
10	$\frac{246.7}{23}$	77.9	10	$\frac{629.6}{622.3}$	7.3	16 o	318.6	4.3	300	139.7	$\begin{array}{l\|l} \mathrm{x} \cdot 3 & 48 \end{array}$		51.9 50.2	1.9 1.7 r 1
20	${ }_{21} 55.6$	71.1	20	622.3 615.2	7.1	20	314.5	4.0	20	138.4	$\begin{aligned} & x .3 \\ & x .3 \end{aligned}$	49	$\frac{50.2}{48.4}$	1.81.71.7
30	2050.9	64.7	30	68.4	6.8	40	310.5		40	137.1				
40	1951.9	59.0	40	6 I .8	6.6	170	36.6	3.9 3.7	310	135.8	1.3	52	46.7	$\begin{array}{r}1.7 \\ \\ \hline\end{array}$
50	1858.0	53.9	50	555.4	6.4	20	$\begin{array}{ll}3 & 2.9\end{array}$	3.6	20	134.5	I． 3	$\begin{aligned} & 52 \\ & 53 \end{aligned}$	43.5	1.6
20	188.6	49.4	90	549.3	6.1	40	259.3		40	133.3	1.2			
10	1723.0		10	543.3	6.0	180	255.8		320	132.1			4	1.5
20	1640.7	42.3 39.8	20	537.6	5.7	20	252.5	3.3	20	130.9	1.2	55	48.4 38.9	1.5 1.4 1.4
30	160.9	39.8 37.5	30	532.0		40	249.3	${ }^{3.2}$	40	129.8	I． 1	57	37.5	
40	1523.4	37.5 35.6	40	526.5	5.5	190	246.1		330	128.7			36.1	1.4
50	1447.8	35.6	50	521.3	5.2	20	243.1	2.9	20	127.6	． 1	59	34.7	1.4
30	1414.6	33.2 30.9	10.	516.2	5.0	40	240.2		40	I 26.5	i．	60	33．3	
10	1343.7	28.7	10	5 II． 2	4.8	200	237.3	2.8	340	125.4		$\begin{aligned} & 6 \mathrm{I} \\ & 62 \end{aligned}$	32.0	1.3
20	1315.0	26.7	20	56.4	4.7	20	234.5		20	124.3			30.7	1.3 1.3 2
30	1248.3	24.6	30	51.7	4.5	40	231.9		40	123.3		63	29.4	1.3 r． 2
40 50	$\begin{array}{lll}12 & 23.7 \\ 12 & 0.7 \\ 12 & \end{array}$	23.0	40 50	457.2 452.8	$4 \cdot 4$	210	229.3	2.6 2.5	350	122.3		64	28.2	1.3 1.3 1.3 1.2
40	1138.9	2 L .8	－	448.5	4.3		226.8	2.52.42.4	20	121.3	1.0	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	26.9	1.2
10	1118.3	19.7	10	$444 \cdot 3$	3.9	$\underline{42}$	$\frac{224.3}{221.9}$		40	120.3	1．0	67 68	． 5	1.2 1.2 1.2 1.2
20	1058.6	19．0	20	440.2		$\frac{20}{20}$		2.3		$\frac{119.3}{118.3}$			24.5 23.3	1.2
30	1039.6	18.4	30	436.3 432.4	3.9	40	217.4	2.2 2.2	20 40	118.3 117.4	${ }^{1.0}$	69	22.2	${ }^{1.2}$
50	103.3	16.8	50	428．7	3.7 3.7	230	215.2		370	$\underline{16.5}$	0.9	70	21.0	R． x
50	946.5	16.8 15.6	120	425.0		20	213.0	2.1	20	115.6	0.90.9	$\begin{aligned} & 71 \\ & 72 \end{aligned}$	19.8	
10	930.9	15.6 14.9	10	421.4	3.6	40	210.9		40	114.7			18.8	． 1
20	916.0	14.9	20	418.0	3.4 3.4	240	28.9		380	113.8	${ }_{0}^{0.9}$	73	17.7	
30	91.9	13.5	30	414.6		20	27.0		20	112.9	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 74 \\ & 75 \end{aligned}$	16.6	1.1
40	848.4	13.5	40	411.3	3.3 3.2	40	2 5．1		42	112.0			15.5	\％
50	835.6	${ }^{2} 2.8$	50	48.1		250	23.2	1.9 x． 8	390	III．			$\begin{aligned} & 13.4 \\ & 123 \\ & 11.2 \end{aligned}$	1． 1
60	823.3		130	44.9		20	21.4			110.3	0.9	$\begin{aligned} & 77 \\ & 78 \\ & 79 \end{aligned}$		r．r．1.51
10	811.6		10	41.8		40	159.6	1.8	40	19.5	0.8			
20	80.3	10.8	20	358.8	2.9	260	157.8		$\frac{4}{40}$	18.7		$\frac{79}{80}$	10.2	． 1
30	749.5	10.3	30	355.9	2.9	20	156.1	1.7	20					
40 50	739.2	10．0	40	353.0 350.2	2.8	40	I 54．4	1.7	40	17.1		82	8.1	
70	719.7	9.5	140	347．4	2.82.8	270	152.8		4 I	16.3	0.8	86	4.1	
												90	0.0	
							149.7			14.7				
						28 o	148.2		$\underline{420}$	14.0				

Smithsonian Tables．

-	h. m.	\bigcirc	h. m.	\bigcirc	h. m.	0	h. m.	-	h. m.	0	h. m.		.		s.
0	0 O	60	40	120	8 -	180	120	240	16 o	300	20 0	0	00	0	0.000
1	- 4	6 I	44	121	84	181	124	24I	164	301	204	1	- 4	\mathbf{I}	0.067
2	- 8	62	48	122	88	182	128	242	168	302	208	2	- 8	2	0.133
3	012	63	412	123	812	183	1212	243	1612	303	12		012	3	0.200
4	- 16	64	416	124	816	184	1216	244	1616	304	2016		- 16		0.267
	0	65	420	125	820	185	1220	245	1620	305	2020	5	020	5	0.333
6	0	66	424	126	824	186	1224	246	1624	306	2024	6	- 24	6	0.400
7	- 28	67	428	127	82	187	1228	247	1628	307	2	7	$\bigcirc 28$	7	0.467
8	- 32	68	432	128	832	188	1232	248	1632	308	2032	8	$\bigcirc{ }^{-} 32$	8	0.533
9	- 36	69	436	129	836	189	1236	249	1636	309	2036	9	O 36	9	0.600
$\overline{10}$	040	70	440	130	840	190	1240	250	1640	310	2040	10	040	10	0.667
11	044	7 I	444	131	844	191	1244	251	1644	311	2044	1	044	11	33
12	048	72	448	132	848	192	1248	252	1648	312	2048	2	048	2	0.800
13	O 52	73	452	133	852	193	1252	253	1652	313	2052	13	052	13	0.867
14	- 56	74	456	134	856	194	1256	254	1656	314	2056	14	056	14	0.933
15	10	75	5 o	135	9 o	195	130	255	170	315	210	15	1	15	1.000
16		76	54	136	94	196	13	256	$\begin{array}{lll}17 & 4\end{array}$	316	2 I 4	16	1	6	1.067
17	18	77	58	137	98	197	138	257	17	317	21	17	1	17.	I.I 33
18	12	78	512	138	912	198	1312	258	1712	318	2112	18	11	18	I. 200
19	116	79	516	139	916	199	1316	259	1716	319	2116	19	1	19	1.267
20	2	80	520	140	920	200	1320	260	1720	320	21	20	120	20	1.333
21	I 24	81	524	141	924	201	1324	261	17	321	2124	21	124	21	1.400
22	128	82	528	142	928	02	1328	262	1728	322	21	22	128	22	1.467
23	132	83	532	143	932	203	1332	263	1732	323	2132	23	132	23	1.533
24	136	84	536	144	936	204	1336	264	1736	324	2136	24	136	24	1.600
25	140	85	540	145	940	205	1340	265	1740	325	2140	25	140	25	1.667
6	44	86	544	146	944	206	1344	266	1744	326	2144	26	144	26	1.733
27	148	87	548	147	948	207	1348	267	1748	327	2148	27	148	27	1.800
28	$1{ }^{1} 2$	88	552	148	952	208	1352	268	1752	328	2152	28	152	28	1.867
29	156	89	556	149	956	209	1356	269	1756	329	2156	29	156	29	1.933
30	2	90	60	150	10	210	140	270	18 o	330	22	30	20	30	2.000
31		91		151	10	211		271	184	33 I	22	3 I		31	2.067
32	28	92	6	152	108	212	14	272	18	332	22	32		32	2.133
33	212	93	612	153	1012	213	1412	273	181	333	2212	33		33	2.200
3	6	9	616	154	Io 16	214	1416	274	1816	3334	221	34	216	34	2.267.
35	220	95	6	155	IO 20	215	1420	275	18	335	22	35	220	35	2.333
36	224	96	624	156	IO 24	216	1424	276	18	336	222	36	2	36	2.400
37	228	97	628	157	1028	217	1428	277	18	337	2228	37	2	37	2.467
38	232	98	632	158	IO 32	218	1432	278	I8 32	338		38	232	38	2.533
39	236	99	636	159	1036	219	1436	279	1836	339	2236	39	236	39	2.600
40	240	100	640	160	1040	220	1440	280	1840	340	2240	40	240	40	2.667
41	244	101	644	161	1044	221	1444	281	1844	341	2244	41	244	41	2.733
42	248	102	648	162	1048	222	1448	282	1848	342	2248	42	248	42	2.800
43	252	103	652	163	1052	223	1452	283	1852	343	2252	43	252	43	2.867
	256	104	656	164	1056	224	1456	284	1856	344	2256	44	256	44	2.933
45	3 of	105	70	165	II 0	225	150	285	190	345	230	45	30	45	3.000
46	$3{ }^{3} 8$	106	$\begin{array}{ll}7 & 4 \\ 7\end{array}$	166	$\begin{array}{ll}\text { II } & 4 \\ \text { II } & 8 \\ \text { 1 }\end{array}$	226	15	286		346	${ }^{23} \begin{array}{ll}23 \\ 23\end{array}$	46	3	46	3.067
47	38	107	78	167	$\begin{array}{ll}11 & 8 \\ \text { I }\end{array}$	227	158	287	198	347	238	47	3 8	47	3.133
48	312	108	712	168	II 12	228	1512	288	1912	348	2312	48	312	48	3.200
49	316	109	716	169	1116	229	1516	289	1916	349	2316	49	316	49	3.267
50	320	110	720	170	1120	230	1520	290	1920	350	2320	50	320	50	3.333
51	324	111	724	171	1124	23 J	1524	291	1924	351	2324	51	324	51	3.400
52	328	112	728	172	II 28	232	1528	292.	1928	352	2328	52	328	52	3.467
53	332	113	732	173	1132	233	1532	293	1932	353	2332	53	332	53	3.533
	336	1114	736	174	II 36	235	1536	294	1936	354	2336	55	336	54	3.600
55	340	115	$74{ }^{\circ}$	175	II 40	235	1540	295	1940	355	234°	55	340	55	3.667
56	344	116	744	176	1144	236	1544	296	1944	356	2344	56	344	56	3.733
57	348	117	748	177	II 48	237	1548	297	1948	357	2348	57	348	57	3.800
58	352 356	118	752 756	178	II 115	238	115 5	298	1952	358	23 5 23 5	58	352	58	3.867
$\frac{59}{60}$	450	120	7 80	180	120	$\underline{240}$	$\frac{1550}{160}$	300	$\frac{1956}{20}$	$\underline{350}$	$\frac{2356}{240}$	59	356	59	$\frac{3.933}{4000}$

FOR CONVERSION OF TIME INTO ARC.

Hours of Time into Arc.

Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.
hrs.	-	hrs.	-	hrs.	。	hrs.	-	hrs.	-	hrs.	-
1	15	5	75	9	135	13	195	17	255	21	
2 3 3	30	6	90 905	10	${ }^{15}$	14	210	18	270	22	330
3 4	45 60	7 8	105 120	112	165 180	15 16	225 240	19 20	285 300	23 24	335 345 360

Minutes of Time into Arc.

m.	-	m.	-	m.	- ,
1	015	21	515	41	1015
2	$\bigcirc 30$	22	530	42	1030
3	- 45	23 24	545	43	1045
4		24		44	110
5	115	25	615	45	II 15
6	130	26	630	46	1130
7			645	47	1145
8	20	28	70	48	120
9	215	29	715	49	1215
10	230	30	730	50	1230
11	245	3 I	745	51	1245
12	30	32	80	52	130
13	315	33	815	53	1315
14	330	34	830	54	1330
15	345	35	845	55	1345
16	40	36	90	56	14 -
17	415	37	915	57	1415
18	430	38	930	58	1430
19	445	39	945	59	1445
20	5 -	40	10 о	60	150

Seconds of Time into Arc.

s.	' "	s.	"	s.	"
1	015	21	515	41	1015
2	- 30	22	530	42	1030
3	\bigcirc	23	545	43	1045
4	10	24	60	44	II 0
5	115	25	615	45	${ }_{11} 15$
6	130	26	630	46	II 30
7	145	27	645	47	1145
8	20	28	70	48	120
9	215	29	715	49	1215
10	230	30	730	50	1230
11	245	31	745	51	1245
12	30	32	8 \%	52	130
${ }^{1} 3$	315	33	815	53	1315
14	330	34	830	54	1330
15	345	35	845	55	1345
16	40	36	90	56	140
17	415	37	915	57	1415
18	430	38	930	58	1430
19	445	39	945	59	1445
20	50	40	10 -	60	150

Hundredths of a Second of Time into Arc.

Hundredths of a Second of Time.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	"	"	"	"	"	"	"	"	$\%$	"
0.00	0.00	0.15	0.30	0.45	0.60	0.75	0.90	1.05	1.20	1. 35
. 10	1.50	1. 65	1.80	1.95	2.10	2.25	2.40	2.55	2.70	2.85
. 20	3.00	3.15	$3 \cdot 30$	3.45	3.60	3.75	3.90	4.05	4.20	4.35
. 30	4.50	4.65	4.80	4.95	5.10	5.25	5.40	$5 \cdot 55$	$5 \cdot 70$	5.85
.40	6.00	6.15	6.30	6.45	6.60	6.75	6.90	7.05	7.20	$7 \cdot 35$
0.50	7.50	7.65	7.80	7.95	8.10	8.25	8.40	8.55	8.70	8.85
. 60	9.00	9.15	9.30	9.45	9.60	9.75	9.90	10.05	10.20	10.35
. 70	10.50	10.65	10.80	10.95	II.10	11.25	11.40	11.55	11.70	11.85
. 80	12.00	12.15	12.30	12.45	12.60	12.75	12.90	13.05	13.20	13.35
. 90	13.50	13.65	13.80	13.95	14.10	14.25	14.40	14.55	14.70	14.85

Table 34.
CONVERSION OF MEAN TIME INTO SIDEREAL TIME.

S	m	m_{I}	m 2	m 3				
0	$\begin{array}{ccc}\text { h } & \text { m } & \text { s } \\ 0 & 0 & 0\end{array}$	$\begin{array}{lc} \hline \text { h } & \text { m } \\ 6 \quad 515 \end{array}$	$\begin{array}{lcc} \hline \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 12 & 10 & 29 \end{array}$	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ \mathrm{I} 8 \mathrm{~s} \\ 1544 \end{array}$	0.00	$\begin{aligned} & \mathrm{mg} \\ & 0 \\ & 0 \end{aligned}$	0.50	${ }^{\text {m }}$
1	065	61120	121634	182149	0.01	\bigcirc	0.51	
2	01210	61725	122240	182754	0.02	07	0.52	310
3	- 1816	62330	122845	183359	0.03	$\bigcirc 11$	0.53	314
4	- 2421	62936	123450	18405	0.04	$\bigcirc 15$	0.54	317
5	- 3026	63541	124055	184610	0.05	0 I8	0.55	321
6	- 3631	64 I 46	1247 I	185215	0.06	022	0.56	325
7	04237	64751	12536	185820	0.07	026	0.57	328
8	$\bigcirc{ }^{\circ} 4842$	65356	125911	19426	0.08	- 29	0.58	332
9	05447	702	13516	191031	0.09	$\bigcirc 33$	0.59	335
10	1052	767	131121	191636	0.10	037	0.60	339
11	165^{8}	71212	131727	192241	0.11	040	0.61	343
12	1133	71817	132332	192847	0.12	044	0.62	346
13	1198	72423	132937	193452	0.13	047	0.63	350
14	12513	73028	133542	194057	0.14	$\bigcirc 51$	0.64	354
15	13119	$73^{6} 33$	134148	19472	0.15	- 55	0.65	357
16	1 3724	74238	134753	19537	0.16	- 58	0.66	41
17	14329	74844	135358	195913	0.17	12	0.67	
18	1 4934	75449	$14 \bigcirc 3$	20518	0.18	I 6	0.68	48
19	1 5540	$8 \bigcirc 54$	1469	201123	0.19	19	0.69	412
20	2145	8659	141214	201728	0.20	113	0.70	416
21	2750	8135	141819	202334	0.21	117	0.71	419
22	21355	81910	142424	202939	0.22	120	0.72	423
23	2201	82515	143030	203544	0.23	124	0.73	427
24	2266	83120	143635	204149	0.24	128	0.74	430
25	23211	83726	144240	204755	0.25	131	0.75	434
26	23816	84331	144845	20540	0.26	I 35	0.76	43^{8}
27	24422	84936	145451	2105	0.27	139	0.77	441
28	25027	85541	15056	21610	0.28	I 42	0.78	445
29	25632	9147	1571	211216	0.29	146	0.79	449
30	3237	9.752	15136	211821	0.30	150	0.80	45^{2}
3 I	3843	91357	151912	212426	0.31	153	0.81	456
32	31448	$920 \cdot 2$	152517	213035	0.32	157	0.82	459
33	32053	9268	153122	213637	0.33	21	0.83	53
34	32658	93213	153727	214242	0.34	24	0.84	57
35	3333	93818	154333	214847	0.35	28	0.85	510
36	3399	94423	154938	215452	0.36	211	0.86	514
37	34514	95028	155543	$\begin{array}{lll}22 & 0 & 58\end{array}$	0.37	215	0.87	518
38	35119	95634	16148	2273	0.38	219	0.88	521
39	35724	$10 \quad 239$	16754	22138	0.39	222	0.89	525
40	4330	10844	161359	221913	0.40	226	0.90	529
41	4935	101449	16204	222519	0.41		0.91	
42	41540	102055	16269	223124	0.42	233	0.92	536
43	42145	10270	163214	223729	0.43	237	0.93	540
44	42751	10335	163820	224334	0.44	241	0.94	543
45	43356	103910	164425	224939	0.45	244	0.95	547
46	440 I	104516	165030	225545	0.46	248	0.96	551
47	4466	105121	165635		0.47	252	0.97	554
48	45212	105726	$17 \quad 241$	23755	0.48	255	0.98	558
49	45817	11331	17846	23140	0.49	259	0.99	62
50	5422	11937	171451	23.206	0.50	33	1.00	65
51	51027	111542	172056	232611	Example: Let the given mean time be $14^{\mathrm{L}} 57^{\mathrm{m}} 3^{2 \mathrm{~L}} .56$. The table gives first for $14^{\mathrm{h}} 54^{\mathrm{ma}} 51^{\mathrm{D}} \quad 2^{\mathrm{m}} 27^{\mathrm{\prime} \mathrm{\prime}}$ then for The sum $\begin{array}{lll} 2 & 41 & 0.44 \\ 227.44 \end{array}$ $14^{\mathrm{b}} 57^{\mathrm{m}} 3^{\mathrm{m}} \cdot 5^{6}+2^{\mathrm{m}} 27^{\mathrm{B}} \cdot 44=15^{\mathrm{b}} 0^{\mathrm{m}} 0^{\mathrm{d}}$ is the required sidereal time.			
52	51633	112147	17272	233216				
53	522 5 5	11 2752 11 73	17337	233821				
54	528.43	II 3358	173912	234427				
55	53448	$\begin{array}{llll}11 & 40 & 3\end{array}$	174517	235032				
56 57	54054 54659	$\begin{array}{llll}\text { II } & 46 & 8 \\ \text { II } & 52 & 13\end{array}$	$\begin{array}{lllll}17 & 51 & 23 \\ 17 & 57 \\ 28\end{array}$	235637 24 2				
57 58	54659 5 53	$\begin{array}{llll}11 & 52 & 13 \\ \text { II } & 5 \\ 1 & 19\end{array}$	175728 18 18	$\begin{aligned} & 24242 \\ & 24848 \end{aligned}$				
59	559.9	12424	18938	241453				
60	6515	121029	18 I5 44	$\frac{2412058}{24}$				

Smithsonian Tableg.

CONVERSION OF SIDEREAL TIME INTO MEAN TIME.

S	$\begin{gathered} \mathrm{m} \\ 0 \end{gathered}$	$\underset{\mathbf{I}}{\mathrm{m}}$	m 2	$\begin{gathered} m \\ 3 \end{gathered}$				
0	$\begin{array}{llll} \hline h & m & s \\ o & 0 & 0 \end{array}$	$\begin{array}{l\|cc} \hline h & m & s \\ 6 & 6 & 15 \end{array}$	$\begin{array}{ccc} \hline h & m & s \\ 12 & 12 & 29 \end{array}$	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ \mathrm{I} 8 & \mathrm{I} 8 & 44 \end{array}$	$\stackrel{\mathbf{s}}{0.00}$	$\begin{array}{cc} \mathrm{m} & \mathrm{~s} \\ 0 & 0 \end{array}$	$\begin{gathered} \mathrm{s} \\ 0.50 \end{gathered}$	$\begin{array}{cc}\text { m } & \text { s } \\ 3 & 3\end{array}$
1	066	61221	121835	182450	0.01	- 4	0.51	
2	01212	61827	122442	183056	0.02	$\bigcirc 7$	0.52	310
3	- 1819	62433	123048	18372	0.03	$\bigcirc 11$	0.53	314
4	- 2425	63040	123654	18439	0.04	$\bigcirc 15$	0.54	318
5	0303 I	63646	12430	184915	0.05	018	0.55	321
6	- 3637	64252	12497	18552 L	0.06	022	0.56	325
7	- 4244	64858	125513	19127	0.07	$\bigcirc 26$	0.57	329
8	- 4850	6554	13119	19734	0.08	- 29	0.58	332
9	$\bigcirc 5456$	7111	13725	191340	0.09	$\bigcirc 33$	0.59	33
10	1 I 2	7117	131331	191946	0.10	037	0.60	340
11	$\begin{array}{ll}17 & 7\end{array}$	71323	131938	19255^{2}	0.11	040	0.61	34
12	11315	71929	132544	193159	0.12	$\bigcirc 44$	0.62	347
13	11921	72536	133150	$1938{ }^{8} 5$	0.13	048	0.63	351
14	12527	73142	133756	194411	0.14	051	0.64	35
15	13134	73748	13443	195017	0.15	$\bigcirc 55$	0.65	35
16	I 3740	74354	13509	195623	0.16	- 59	0.66	4
17	1 4346	7501	135615	20230	0.17	12	0.67	4
18	I 4952	7567	$14{ }_{14} 22 \mathrm{II}$	20836	0.18	16	0.68	4
19	I 5559	8213	14828	201442	0.19	110	0.69	4 I
20	225	8819	141434	202048	0.20	113	0.70	416
21	2811	81426	142040	202655	0.21	117	0.71	420
22	21417	82032	142646	20331	0.22	121	0.72	42
23	22024	82638	143253	20397	0.23	124	0.73	427
24	22630	83244	143859	204513	0.24	128	0.74	43
25	23236	$83^{8} 51$	14455	205120	0.25	132	0.75	43
26	$23^{8} 42$	84457	145111	205726	0.26	135	0.76	438
27	24449	8513	145718	21 3 32 21	0.27 0.28	139 143	0.77 0.78	44
28	25055	8579	$\begin{array}{ll}15 & 324\end{array}$	21 9 38 1 15	0.28 0.29	143 146	0.78 0.79	446
29	2571	9316	15930	211545	0.29	146	0.79	449
30	337	9.922	151536	212151	0.30	150	0.80	45
3 I	3914	91528	152143	212757	0.31	154	0.81	45
32	31520	92134	152749 15	$2134 \begin{array}{llll} \\ 21 & 3\end{array}$	0.32 0.33	157	0.82 0.83	
33	32126	92741	153355	214010	0.33		0.83 0.84	5
34	32732	93347	15401	21 4616	0.34 0.35	25	0.83 0.85	51
35	33338	93953	15468 15 15		0.35 0.36	212	0.86	51
36	33945	9 9 5259	155214 155820	$\begin{array}{llll}21 & 58 \\ 22 & 48 \\ 22\end{array}$	0.36 0.37	216	0.87	519
37 38	34551 35157	9 52 9 58	155820 16426	22 1041	0.38	219	0.88	52
39	358	10 418	161033	221647	0.39	223	0.89	5
40	4410	101024	161639	222253	0.40	226	0.90	53
41	41016	101630	162245	22290	0.41	230	0.91	5
42	41622	102237	162851	22356	0.42	234	0.92	53
43	42228	10 2843	163457	224112	0.43	237	0.93	54
44	42835	I0 3449	1641	224718	0.44	2 4I	0.94	54
45	43441	104055	164710	225324	0.45 0.46			54
46	44047	10472	165316	225931	0.46	248	0.96	55
47	44653	10538	165922	23537	0.47	252 256	0.97 0.98	55
48	453 O	105914	17529	231143	0.48 0.49	256 259	0.98 0.99	55
49	4596	II 520	171135	231749	0.49 0.50		1.00	
50	$5 \quad 512$	II 1127	171741	232356	0.50			
51	5 II 18	111733	172347	23308	Example: Given $15^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{a}}$. The table gives first for $14^{b^{4}} 57^{\mathrm{m}} \mathrm{I}^{8} \quad 2^{\mathrm{m}} 27^{8}$ then for 2 42 15 0 0 0.44 The difference $15^{\mathrm{g}} \mathrm{o}^{\mathrm{m}} 0^{\mathrm{B}}-2^{\mathrm{m}} 27^{\mathrm{B}} \cdot 44=14^{\mathrm{L}} 57^{\mathrm{m}} 3^{2^{1} .56}$ is the required mean time.			
52	5 5 5 5 723125	11 2339 II	172954 1736	23 23 23 42 14				
53	52331	11 29 15	17360	234214 23481				
54	52937	II 3552						
55	53543 54150	$\begin{array}{ll}\text { II } & 41 \\ \text { II } & 58 \\ 48\end{array}$	174812 175419	$\begin{aligned} & 235427 \\ & 24 \quad 033 \end{aligned}$				
56	54150 54756	$\begin{array}{llll}11 & 48 & 4 \\ \text { II } & 54 \\ \text { IO }\end{array}$	17 5419 18 185	$\begin{array}{ll} 24 & 033 \\ 24 & 639 \end{array}$				
58	5542	12017	18631	241246				
59	608	12623	181237	241852				
60	6615	121229	181844	24245^{8}				

LENGTH OF ONE DEGREE OF THE MERIDIAN AT DIFFERENT LATITUDES.
[Derivation of table explained on pp. xlvi-xiviii.]

Latitude.	Metres.	Statute Miles.	Geographic Miles. I^{\prime} of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. I^{\prime} of the Eq.
0°	110568.5	68.703	59. 594	45°	111132.1	69.054	59.898
1	110568.8	68.704	59.594	46	111151.9	69.067	59.908
2	110569.8	68.705	59.595	47	111171.6	69.079	59.919
3	110571.5	68.706	59.596	48	IIII91-3	69.091	59.929
4	110573.9	68.707	59.597	49	111210.9	69.103	$59.94{ }^{\circ}$
5	110577.0	68.709	59.598	50	111230.5	69.115	59.95\%
6	110580.7	68.711	59.600	51	I 11249.9	69.127	59.961
7	110585.1	68.714	59.603	52	111269.2	69.139	59.972
8	110590.2	68.717	59.606	53	111288.3	69.151	59.982
9	110595.9	68.721	59.609	54	111307.3	69.163	59.992
10	110602.3	68.725	59.612	55	111326.0	69.175	60.002
11	110609.3	68.729	59.616	56	111344.5	69.186	60.012
12	110617.0	68.734	59.620	57	111362.7	69.198	60.022
13	110625.3	68.739	59.625	58	111380.7	69.209	60.032
14	110634.2	68.745	59.629	59	111398.4	69.220	60.041
15	110643.7	68.751	59.634	60	111415.7	69.230	60.091
16	110653.8	68.757	59.640	61	111432.7	69.241	60.060
17	110664.5	68.763	59.646	62	111449.4	69.251	60.069
18	110675.7	68.770	59.652	63	111465.7	69.261	60.077
19	I 10687.5	68.778	59.658	64	111481.5	69.271	60.086
20	110699.9	68.786	59.665	65	111497.0	69.281	60.094
21	110712.8	68.794	59.672	66	111512.0	69.290	60.102
22	110726.2	68.802	59.679	67	111526.5	69.299	60.110
23	110740.1	68.810	59.686	68	111540.5	69.308	60.118
24	110754.4	68.819	59.694	69	II 1554.1	69.316	60.125
25	110769.2	68.829	59.702	70	111567.1	69.324	
26	110784.5	68.838	59.710	71	111579.7	69.332	60.139
27 28	110800.2	68.848 68.8	59.719 59.727	72	111591.6	69.340	60.145
28 29	110816.3 110832.8	68.858 68.868	59.727 59.736	73	111603.0	69.347	60.151
29	110832.8	68.868	59.736	74	III613.9	69.354	60.157
30	110849.7	68.879	59.745	75			
31	110866.9	68.889	59.755	76	$\text { II } 633.8$	$69 \cdot 366$	60.168
32	110884.4	68.900	59.764	77	111642.8	69.372	60.173
33	110902.3	68.911	59.774	78	III651.2	69.377	60.177
34	110920.4	68.923	59.784	79	II 1659.0	69.382	60.182
35	110938.8	68.934	59.794	80	II 1666.2	69.386	60.186
36	110957.4	68.946	59.804	8 I	111672.6	69.390	60.189
37	110976.3	68.957	59.814	82	I 11678.5	69.394	60.192
38 39	110995.3 111014.5	68.969 68.98 I	59.824 59.834	83 84	I 11683.6	69.397	60.195
39	111014.5	68.98I	59.834	84	1 11688.1	69.400	60.197
40	111033.9	68.993	59.845	85	111691.9		
41	111053.4	69.005	59.855	86	111695.0	69.404	60.201
42	111073.0	69.017	59.866	87	$111697 \cdot 4$	69.405	60.202
43	111092.6 IIII 12.4	69.029	59.876 59.887	88	111699.2	69.407	60.203
44	IIIII 12.4	69.042	59.887	89	1111700.2	69.407	60.204
45	111132.1	69.054	59.898	90	111700.6	69.407	60.204

Smitheonian Tables.

LENGTH OF ONE DEGREE OF THE PARALLEL AT DIFFERENT LATITUDES.
[Derivation of table explained on p. xlix.]

Latitude.	Metres.	Statute Miles.	Geographic Miles. \mathbf{I}^{\prime} of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. I^{\prime} of the Eq.
0°	111321.9	69.171	60.000	45°	78850.0	48.995	42.498
1	111305.2	69.162	59.991	46	77466.5	48.135	4 I .753
2	111254.6	69.130	59.964	47	76059.2	47.261	40.994
4	111170.4 111052.6	69.078 69.005	59.98 59.855	4	74628.5 73174.9	46.372 45.469	40.223 39.440
5	110901.2	68.911	59.773	50	71698.9	44.552	38.644
6	110716.2	68.796	59.673	51	70200.8	43.621	37.837
8	110497.7	68.660	59.556	52	6868 I .1	42.676	37.018
8	110245.8	68.503 68.326	59.420 59.266	53	67140.3 65578	41.719	36.187
9	109960.5	68.326	59.266	54	65578.8	40.749	$35 \cdot 346$
10	109641.9	68.128	59.095	55	63997.1	39.766	34.493
11	109290.1	67.909	58.905	56	$62395 \cdot 7$	38.771	33.630
12	108905.2	67.670	58.697	57	60775.1	37.764	33.757
13	108487.3	67.411	${ }_{58}^{8.472}$	58	59 5 35.7	36.745	31.873
14	108036.6	67.131	58.229	59	57478.1	35.715	30.979
15	107553.1	66.830	57.969	60	55802.8	34.674	30.076
16	107037.0	66.510	57.690	$6 \mathrm{6r}$	54110.2	33.622	29.164
17	106488.5	66.169	57.395	62	52400.9	32.560	28.243
18	105907.7	65.808	57.082	63	50675.4	31.488	27.313
19	105294.7	65.427	56.751	64	$48934 \cdot 3$	30.406	26.374
20	104649.8	65.026	56.404	65	47178.0	29.315	25.428
21	103973.2	64.606	56.039	66	45407.1	28.215	24.473
22	103265.0	64.166	55.657	67	43622.2	27.106	23.511
23	102525.4	63.706	55.259	68	41823.8	25.988	22.542
24	101754.6	63.227	54.843	69	40012.4	24.862	${ }^{21.566}$
25	100953.0	62.729	54.411	70	38188.6	23.729	20.583
26	100120.6	62.212	53.963	71	36353.0	22.589	19.593
27	90257.8	6 I .676	53.498	72	34506.2		18.598
28 29	98364.8 97441.9	61.121 60.548	53.016 52.519	73 74	32648.6 30780.9	20.287 19.126	17.597 16.590
30	96489.3	59.956	52.006	75	28903.6	17.960	15.578
31	95597.3	59.345	51.476	76	27017.4	16.788	14.562
32	94496.2	58.717	50.931	77	25122.8	15.611	13.541
33	93456.3	58.071	50.37 I	78	23220.4 21310.8	14.428	12.515 11.486
34	92387.9	57.407	49.795	79	${ }^{21310.8}$	13.242	11.486
35	91291.3	56.726	49.204	80	19394.6	12.051	${ }^{10.453}$
36	90166.8	56.027	48.598	81	17472.4	10. 857	8.417
37	89014.8	55.31 II	47.977	82	15544.7 13622.2	8.659	8.378 7.337
38	87835.6 86629.6	54.578 53.829	47.34 I 46.691	83 84	13612.2 11675.5	8.458 7.255	7.337 6.293
39	86629.6	53.829	46.691	8	1175.5	7.255	
40	85397.0	53.063	46.027	85	9735.1	6.049	5.247 4.200
41	84138.4 828540	52.281 51.483	$45 \cdot 349$ 44.656	86	7791.7 5845.9	3.632	
42	82854.0 81544.2	51.483 50.669	44.656 43.950	87 88	585.9 3898.3	${ }_{2.422}^{3.632}$	3.151 2.101
43	81544.2 80209.4	50.869 49.840	43.931	89	1949.4	1.2II	1.051
45	78850.0	48.995	42.498 .	90	0.0	0.000	0.000

Emithsonian Tables.

Table 38.
INTERCONVERSION OF NAUTICAL AND STATUTE MILES.
I nautical mile $=6080.27$ feet.

Nautical Miles.	Statute Miles.	Statute Miles.	Nautical Miles.
1	1.1516	1	0.8684
2	2.3031	2	1.7368
3	3.4547 4.6062	3 4	2.6052 3.4736
4	4.6062	4	3.4736
5	5.7578	5	4.3420
6	6.9093 8.0609	6	5.2104
7	8.0609 9.2124	8	6.9472
9	10.3640	9	7.8155

Emithsonian Tables.

* As defined by the United States Coast and Geodetic Survey.

Table 39.

CONTINENTAL MEASURES OF LENGTH WITH THEIR METRIC AND
The asterisk (*) indicates that the measure is obsolete or seldom used.

Measure.	Metric Equivalent.	English Equivalent.
El, Netherlands	1 metre.	3.2808 feet.
Fathom, Swedish $=6$ feet	1.7814 "	5.8445 "
Foot, A ustrian,*	0.31608	I. $037{ }^{\circ}$ "
old French *	0.32484 0.30480	$\begin{array}{ll} \text { I.0657 ، } \\ \text { I } & \end{array}$
Rheinlandisch or Rhenish (Prussia,	0.30480	
Denmark, Norway)* .	$0.313^{8} 5$	1.0297 "
Swedish* . . .	0.2969	0.974 I "
* Spanish * = ${ }^{\frac{1}{3} \text { vara }}$. .	0.2786	0.9140 "
*Klafter, Wiener (Vienna) . ${ }^{\text {a }}$	1.89648	6.2221 "
Line, old French $=1$ 1 14 foot. . . Mile, Austrian post $ 24000$ feet.	0.22558 cm .	0.0888 inch.
Mile, Austrian post ${ }^{*}=24000$ feet . .		4.714 statute miles. I. 1508
Swedish = 36000 feet .	10.69 "	6.642 - "
Norwegian $=36000$ feet . . -	11.2986	7.02 " "
Netherlands (mijl) ${ }^{\text {d }}$		0.6214 " "
Prussian (law of 1868)	7.500	4.660 " "
Danish	$7.5324{ }^{\text {" }}$	4.6804 " "
PRalm, Netherlands	0.1 metre.	0.328 I feet.
Rode, Danish - ${ }^{\text { }}$ - ${ }^{\text {a }}$ -	3.7662	12.356
*Ruthe, Prussian, Norwegian.	3.7662 "	12.356 "
Sagene, Russian ${ }^{\text {a }}$ -	2.1336	7
*Toise, old French $=6$ feet	1.9490	$6.3943{ }^{\prime \prime}$
*Vara, Spanish. -	0.8359	2.7424 "
Wexican $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	0.8380	2.7293 "
Werst, or versta, Russian $=500$ sagene	1.0668 km .	3500 "

Emithsonian Tables. DERIVED FUNCTIONS.
$g=9.77989+0.05221 \sin ^{2} \phi$
$=9.80599-0.026$ ro cos 2ϕ metres.*
$\phi=$ geographical latitude.

ϕ	g	$\log g$	$\log \frac{1}{2 g}$	$\log \sqrt{2 g}$	$\frac{g}{\text { g }}^{\dagger}{ }^{\text {a }}$
	Metres.				Metres.
0°	9.7798	0.99033	8.70864-10	0.64568	0.99090
5	.7803	035	862	569	095
10	.7814	040	857	572	106
15	.7834	049	848	576	127
20	. 7859	060	837	582	152
25	.7893	075	822	589	186
30	. 7929	091	806	597	222
35	. 7969	109	788	606	264
40	. 8014	129	768	616	309
45	. 8060	149	748	626	355
50	.8105	169	728	636	401
55	.8150	189	708	646	447
60	.8191	207	690	655	488
65	. 8227	223	674	663	525
70	.8261	238	659	670	559
75	. 8286	249	648	676	584
80	. 8306	258	639	680	605
85	. 8317	263	634	683	616
90	. 8322	265	632	684	621

Smitnsonian Tableb.

* From The Solar Parallax and its Related Constants, by Wm. Harkness, Professor of Mathematics, U. S. N.; Washington: Government Printing Office, 889 r .
\dagger This is length of seconds pendulum.

LINEAR EXPANSIONS OF PRINCIPAL METALS IN MICRONS PER METRE (OR MILLIONTHS PER UNIT LENGTH).

Name of metal.	Expansion per degree C.	Expansion per degree F.
Aluminum	20	11.1
Brass	19	10.5
Copper	17	9.4
Glass . . .	9	5.0
Gold . -	15	8.3
Iron, cast	11	6.1
Iron, wrought	12	$\begin{array}{r}6.7 \\ \hline\end{array}$
Lead	28	15.5
Platinum Platinum-iridium ${ }^{1}$.	8.7	5.0 4.8
Silver	19	10.5
Steel, hard	12	6.7
Steel, soft	11	6.1
Tin	19	10.5
Zinc . . .	29	16.1

Smithsonian Tables.
${ }^{1}$ Of International Prototype Metres.

Table 42.

FRACTIONAL CHANGE IN A NUMBER CORRESPONDING TO A CHANGE IN ITS LOCARITHM.
 Computed from the formula,

$$
\frac{\Delta N}{N}=\frac{\Delta \log N}{\mu}
$$

$\mu=$ modulus of common logarithms $=0.43429448$.

$\begin{aligned} & \text { For } \\ & \Delta \log N \\ & =\mathrm{I} \text { unit in } \end{aligned}$	$\frac{\Delta N}{N}$	$\begin{gathered} \text { For } \\ =\Delta \log N \\ =4 \text { units in } \end{gathered}$	$\frac{\frac{\Delta N}{N}}{\text { (in round numbers) }}$
$\begin{aligned} & \text { 4th place } \\ & \text { 5th "6 } \\ & \text { 6th " } \\ & \text { 7th ". } \end{aligned}$		4th place 5th 6th 7th 7th	

Smithsonian Tables.

APPENDIX.

CONSTANTS.

Numerical Constants.	Number.	Logarithm.
Base of natural (Napierian) logarithms, Log e, modulus of common logarithms, Circumference of circle in degrees, " "، " in minutes, " " " in seconds, Circumference of circle, diameter unity,	$=2.7182818$	4342945
	$\mu=0.4342945$	9.6377843-10
		2.5563025
	21600	4.3344538
	1296000	6.1126050
	$r=3.1415926$	0.4971499
$$	$2=0.1013212$	57003-10
	$\sqrt{\pi}=1.7724539$	0.2485749
	$\frac{1}{\sqrt{\pi}}=0.5641896$.7514251-10
	$\overline{2}=1.4142136$	0.1505150
	$\sqrt{3}=1.7320508$. 2385607
The arc of a circle equal to its radius is in degrees, $\rho^{\circ}=180 / \pi$ in minutes, $\rho^{\prime}=60 \rho^{\circ}$ in seconds, $\rho^{\prime \prime}=60 \rho^{\prime}$	$\begin{aligned} & =\quad 57.29578^{\circ} \\ & =\quad 3437.7468^{\prime} \\ & =206264.8^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1.7581226 \\ & 3.5362739 \\ & 5.3144251 \end{aligned}$
For a circle of unit radius, the arc of $\mathrm{I}^{\circ} \quad=1 / \rho^{\circ}$ arc of $i^{\prime} \quad=1 / p^{\prime}$ arc (or sine) of $\mathrm{I}^{\prime \prime}=1 / \rho^{\prime \prime}$	$\begin{aligned} & =0.0174533 \\ & =0.0002909 \\ & =0.00000485 \end{aligned}$	$\begin{aligned} & 8.2418774-10 \\ & 6.4637261-10 \\ & 4.6855749-10 \end{aligned}$
Geodetical Constants.		
Dimensions of the earth (Clarke's spheroid, 1866) and derived quantities.		
Equatorial semi-axis in feet, in miles,	$\begin{aligned} & =a=20926062 . \\ & =a=\quad 3963 \cdot 3 \end{aligned}$	$\begin{gathered} 7.3206875 \\ 3.5980536 \end{gathered}$
Polar semi-axis in feet, in miles,	$\begin{aligned} & =b=20855 \mathrm{I} 2 \mathrm{II} . \\ & =b=\quad 3949.8 \end{aligned}$	$\begin{aligned} & 7.3192127 \\ & 3.5965788 \end{aligned}$
$(\text { Eccentricity })^{2}=\frac{a^{2}-b^{2}}{a^{2}}$	$\wedge^{2}=0.00676866$.8305030-10
$\text { Flattening }=\frac{a-b}{a}$	$=f=1 / 294.9784$.5302098-10
Perimeter of meridian ellipse, Circumference of equator, Area of earth's surface,	$\begin{aligned} & =24859.76 \mathrm{n} \\ & =24901.96 \\ & =196940400 \mathrm{~s} \end{aligned}$	re miles.
Mean density of the earth (Harkness) Surface density "	$\begin{aligned} & =5.576 \pm 0.016 . \\ & =2.56 \pm 0.16 . \end{aligned}$	
Acceleration of gravity (Harkness) : $g(\mathrm{~cm}$. per second $)=980.60(\mathrm{r}-0.002662 \cos 2 \phi)$ for latitude ϕ and sea level. g, at equator $=977.99 ; g$, at Washington $=980.07 ; g$, at Paris $=980.94$; g, at poles $=983.2 \mathrm{I} ; g$, at Greenwich $=981.17$. Length of the seconds pendulum (Harkness) : $l=39.01254^{\circ}+0.208268 \sin ^{2} \phi$ inches $=0.990910+0.005290 \sin ^{2} \phi$ metres.		

APPENDIX.

Astronomical Constants (Harkness).

Sidereal year $=365.2563578$ mean solar days.
Sidereal day $=23^{h} 5^{6} 6 \mathrm{~m} 4,5100$ mean solar time.
Mean solar day $=24^{h} 3^{m} 56.5546$ sidereal time.
Mean distance of the earth from the sun $=92800000$ miles.

Physical Constants.

Velocity of light (Harkness) $=186337$ miles per second $=299878 \mathrm{~km}$. per second.
Velocity of sound through dry air $=1090 \sqrt{1+0.00367 t^{\circ}} \mathrm{C}$. feet per second.
Weight of distilled water, free from air, barometer 30 inches :

	Weight in grains.		Weight io grammes.	
Volume.	$6_{2}{ }^{\circ} \mathrm{F}$.	$4^{\circ} \mathrm{C}$.	$62^{\circ} \mathrm{F}$.	$4^{\circ} \mathrm{C}$
1 cubic inch (determination of 1890)	252.286	252.568	16.3479	16.3662
1 cubic centimetre (1890)	15.3953	15.4125	0.9976	0.9987
I cubic foot (I 890) at $62^{\circ} \mathrm{F}$.	62.2786			

A standard atmosphere is the pressure of a vertical column of pure mercury whose height is 760 mm . and temperature $0^{\circ} \mathrm{C}$., under standard gravity at latitude 45° and at sea level.
I standard atmosphere $=1033$ grammes per sq. $\mathrm{cm} .=14.7$ pounds per sq. inch.
Pressure of mercurial column x inch high $=34.5$ grammes per sq. $\mathrm{cm} .=0.49 \mathrm{I}$ pounds per sq. inch.
Weight of dry air (containing 0.0004 of its weight of carbonic acid) :
I cubic centimetre at temperature $32^{\circ} \mathrm{F}$. and pressure 760 mm . and under the standard value of gravity weighs 0.00129305 gramme.
Density of mercury at $0^{\circ} \mathrm{C}$. (compared with water of maximum density under atmospheric pressure) $=13.5956$.
Freezing point of mercury $=-38 .{ }^{\circ} 5$ C. (Regnault, 1862.)
Coefficient of expansion of air (at const. pressure of 760 mm) for $1^{\circ} \mathrm{C}$. (DO.) : 0.003670 .
Coefficient of expansion of mercury for Centigrade temperatures (BROCH):
$\Delta=\Delta_{0}\left(\mathrm{I}-0.000 \mathrm{I} 8 \mathrm{I} 792 t-0.000000000175 t^{2}-.000000000035116 t^{3}\right)$.
Coefficient of linear expansion of brass for $1^{\circ} C$., $\beta=0.0000174$ to 0.0000190 .
Coefficient of cubical expansion of glass for $1^{\circ} C_{\text {., }} \boldsymbol{\gamma}=0.000021$ to 0.000028 .
Ordinary glass (Recknagel) : at $10^{\circ} C$., $\boldsymbol{\gamma}=0.0000255$; at $100^{\circ}, \gamma=0.0000276$.
Specific heat of dry air compared with an equal weight of water :
at constant pressure, $K_{p}=0.2374$ (from 0° to $100^{\circ} C$., Regnault).
at constant volume, $K_{v}=0.1689$.
Ratio of the two specific heats of air (RONTGEN): $K_{p} / K_{v}=1.4053$.
Thermal conductivity of air (Graetz) : $k=0.0000484\left(\mathrm{I}+0.00185 t^{\circ}\right.$, C.) $\frac{\text { gramme. }}{\mathrm{cm} . \sec .}$
[The quantity of heat that passes in unit time through unit area of a plate of unit thickoess, when its opposite faces differ io temperature by one degree.]
Latent heat of liquefaction of ice (BuNSEN) $=80.025$ mass degrees, C.
Latent heat of vaporization of water $=606.5-0.695 t^{\circ} \mathrm{C}$.
Absolute zero of temperature (Thomson, Heat, Encyc.Brit.) : $-273 .{ }^{\circ} \mathrm{O} \mathrm{C} .=-459 .{ }^{\circ} 4 \mathrm{~F}$. Mechanical equivalent of heat : *
${ }^{1}$ pound-degree, F. (the British thermal unit) $=$ about 778 foot-pounds.
${ }^{1}$ pound-degree, C. $=1400$ foot-pounds.
I calorie or kilogramme-degree, $C .=3087$ foot-pounds $=426.8$ kilogrammetres $=4187$ joules (for $g=98 \mathrm{Icm}$.).

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. English to Metric.

Units of length.

1 inch.
I foot.
I yard.
I mile.

Matric equivalante.

2.54000	centimetres.
0.304801	metre.
0.914402	_1
1.60935	kilometres.

6.45163	square centimetres.
929.034	"
0.83613 I	square metre.
0.404687	hectares.
2.59000	square kilometres.

Units of area.

I square inch.
I square foot.
I square yard.
I acre.
I square mile.

Units of volume.

1 cubic inch.
I cubic foot.
16.3872
0.028317
0.764559

1 cubic yard.

Lagarlthms.
$0.404835-10$
$9.484016=10$
$9.961137-10$
0.206650

0.809669
2.968032
$9.922274-10$
$9.607120-10$
0.4 I 3300
2.4 I 3300

Units of capacity.
I gallon (U. S.) $=231$ cubic inches.
1 quart (U. S.).
3.78544 litres.
0.94636 litres.
4.54683 litres.
$\begin{array}{ll}\text { cubic centimetres. } & \mathbf{1 . 2 1 4} 504 \\ \text { cubic metres or steres. } & 8.452047-\text { ro }\end{array}$
cubic metres or steres.
9.88341 I - IO

Imperial gallon (British).
277.463 cubic inches (1890).

1 bushel (U.S.) $=2150.42$ cubic inches.
I bushel (British).

Units of mass.

1 grain.
I pound avoirdupois.
I ounce avoirdupois.
1 ounce troy.
I ton (2240 lbs .).
I ton (2000 lbs .).
64.7990
0.453593
28.3496
31.1035
1.01605
0.907186
milligrammes.
kilogrammes. grammes. grammes. tonnes. tonnes.
0.578116
9.976056 - 10
0.657709
1.547027
I. 560477
т. 8 II 568 9.656666 - 10
1.452546
I. 4928 IO
0.006914
9.957696 - 10

Units of velocity.

I foot per sec. (0.6818 miles per hr.) $=0.30480$ metres per sec. $=1.0973 \mathrm{~km}$. per hr . I mile per hr. (I .4667 feet per sec.) $=0.44704$ metres per sec. $=1.6093 \mathrm{~km}$. per hr.

Units of force.

1 poundal.
Weight of I grain (for $g=98 \mathrm{rcm}$.).

13825.5 dynes.	4.140682
63.57 dynes.	1.803237
$4.45 \times 1 \mathbf{I O}^{5}$ dynes.	5.648335

Units of stress-In gravitation measure.
I pound per square inch $=70.307$ grammes per sq. centimetre. $\quad 1.846997$
I pound per square foot $=4.8824$ kilogrammes per sq. metre.
Units of work - in absoluta maasure.

I foot-poundal.	421403 ergs.	5.624698

- in gravitation meagure.

1 foot-pound (for $g=981 \mathrm{~cm}$.) $=1356.3 \times 10^{4} \mathrm{ergs}=0.138255$ kilogram-metres.
Units of activity (rate of doing work).
I foot-pound per minute (for $g=981 \mathrm{~cm}$.) $=0.022605$ watts.
I horse-power (33000 foot-pounds per min.) $=746 \mathrm{wa} \mathrm{s}=1.01387$ force de cheval.

Units of heat.

I pound-degree, F.
I pound-degree, \boldsymbol{C}.
$=252$ small calories or gramme-degrees, C.
$=1.8$ pound-degrees, F.

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. Metric to English.

	English squivalsnts.		Logarithms.
Units of length. I metre (10^{8} microns).	39.3700	inches.	1.595165
	3.28083	feet.	0.515984
"	1.09361	yards.	0.038863
I kilometre.	0.62137	miles.	9.793350-10
Units of area.			
I square centimetre.	0.15500	square inches.	9.190 331-10
I square metre.	10.7639	square feet.	I.031 968
" "	I. 19599	square yards.	0.077726
1 hectare.	2.47104	acres.	0.392880
I square kilometre.	0.38610	square miles.	9.586701-10
Units of volume.			
I cubic centimetre.	0.0610234	cubic inches.	8.785496 - 10
I cubic metre or stère.	35.3145	cubic feet.	1.547953
" ${ }^{\text {a }}$	I.30794	cubic yards.	0.116589
Units of capacity.			
1 litre (6r.023 cubic inches).	0.26417	gallons (U. S.).	9.421884-10
" (6.023	1.05668	quarts (U. S.).	0.023944
"	0.21993	Imp. gallons (British).	9.342291 - 10
I hectolitre.	2.83774	bushels (U. S.).	0.452973
	2.75121	bushels (British).	0.439523
Units of mass.			
1 gramme.	15.4324	grains.	1. 888433
I kilogramme.	2.20462	pounds avoirdupois.	0.343334
	35.2739	ounces avoirdupois.	I. 547454
	32.1507	ounces troy.	1. 507190
I tonne.	0.9842 I	tons (2240 lbs .).	9.993086-10
	1.10231	$\text { tons (} 2000 \mathrm{lbs} \text {.). }$	0.042304
Units of velocity.			
1 metre per second. " " "	3.2808	feet per second.	0.515984
	2.2369	miles per hour.	0.349653
1 km . per hr. (0.2778 m. per sec.).	0.62137	miles per hour.	$9.793350-10$
Units of force. I dyne (weight of $(981)^{-1}$ grammes, for $g=981 \mathrm{~cm}$.) $=7.2330 \times 10^{-5}$ poundals.			
Units of stress-in gravitation msasure.			
I gramme per square centimetre.	0.014223	pounds per sq. inch.	
I kilogramme per square metre. I standard atmosphere.	0.204817 pounds per sq. foot.		
	I standard atmosphere. 14.7 pounds per sq. inch. (See def. p. 172.)		
Units of work - in aboolute maazure.			
- In gravitatlon measura.			
I kilogramme-metre (for $g=98 \mathrm{Icm}.)=98 \mathrm{I} \times 10^{5} \mathrm{ergs}=7.2330$ foot-pounds.			
Units of activity (rate of doing work). I watt $=\mathrm{I}$ joule per sec. $(=44.2385$ foot-pounds per minute, for $g=98 \mathrm{Icm}$. $)=0.10194$ kilogramme-metre per sec., for $g=98 \mathrm{Icm}$.			
I force de cheval $=75$ kilogramme-metres per sec. $=735 \frac{3}{4}$ watts $=0.98632$ horse-power. Units of heat.			
I calorie or kilogramme-degree $=3.968$ pound-degrees, $F:=2.2046$ pound-degrees, C. I small calorie or therm, or gramme-degree $=0.001$ calorie or kilogramme-degree.			

DIMENSIONS OF PHYSICAL QUANTITIES.

$L=$ length $; M=$ mass $; T=$ time.

Quantity,	Dlmensione	Quantity.	Dimensions.
Area.	[L2]	Momentum.	[$\mathrm{LM} \mathrm{T}^{-1}$]
Volume.	[L^{s}]	Moment of Inertia.	[$\mathrm{M} \mathrm{L}^{2}$]
Mass.	[M]	Force.	[$\mathrm{LM} \mathrm{T}{ }^{-2}$]
Density.	[$\mathrm{M} \mathrm{L}^{-\ell}$]	Stress (per unit area).	$\left[L^{-1} \mathrm{M} \mathrm{T}^{-2}\right.$]
Velocity.	[$\mathrm{L} \mathrm{T}^{-1}$]	Work or Energy.	$\left[L^{2} \mathrm{M} \mathrm{T}^{-2}\right.$]
Acceleration.	[$1 . \mathrm{T}^{-2}$]	Rate of Working (Power).	[$\mathrm{L}^{2} \mathrm{M} \mathrm{T} \mathrm{T}^{-8}$]
Angle.	[0]	Heat.	$\left[L^{2} \mathrm{M} \mathrm{T}^{-2}\right]$
Angular Velocity.	[T^{-1}]	Thermal Conductivity.	$\left[\mathrm{L}^{-1} \mathrm{M} \mathrm{T}^{-1}\right]$

In Electrostatics.

Quantity of Electricity.
Surface Density: quantity per unit area.
Difference of Potential: quantity of work required to move a quantity of electricity ; (work done) \div (quantity moved).
Electric Force, or Electro-motive Intensity : (quantity) \div (distance ${ }^{2}$).
Capacity of an accumulator: $e \div E$.
Specific Inductive Capacity.

In Magnetics.

Quantity of Magnetism, or Strength of Pole.
Strength or Intensity of Field: (quantity) $\div\left(\right.$ distance $\left.^{2}\right)$.
Magnetic Force.
Magnetic Moment: (quantity) \times (length).
Intensity of Magnetization : magnetic moment per unit volume.
Magnetic Potential: work done in moving a quantity of magnetism ; (work done) \div (quantity moved).
Magnetic Inductive Capacity.

In Electro-magnetics.

Intensity of Current.
Quantity of Electricity conveyed by current: (intensity) \times (time).
Potential, or difference of potential: (work done) \div (quantity of electricity upon which work is done).
Electric Force: the mechanical force acting on electro-magnetic unit of quantity; (mechanical force) - (quantity).
Resistance of a conductor: $E \div i$.
Capacity: quantity of electricity stored up per unit potential-difference produced by it.
Specific Conductivity: the intensity of current passing across unit area under the action of unit electric force.
Specific Resistance: the reciprocal of specific conductivity.

	μ	[0]
Symbol.	Dlmenslons in electro-magnetic system.	Name of practical unit.
i	[$\mathrm{L}^{\frac{1}{2}} \mathrm{M}^{\frac{1}{2}} \mathrm{~T}^{-1}$]	Ampère.
e	[$L^{\frac{1}{4}} \mathrm{M}^{\frac{1}{2}}$]	Coulomb.
E	[$L^{3} \mathrm{M}^{\frac{1}{2}} \mathrm{~T}^{-2}$]	Volt.
E	[$L^{\frac{1}{2}} \mathrm{M}^{\frac{1}{2}} \mathrm{~T}^{-2}$]	
\boldsymbol{R}	[$\mathrm{L} \mathrm{T}^{-1}$]	Ohm.
q	$\left[\mathrm{L}^{-1} \mathrm{~T}^{2}\right]$	Farad.
	[$\left.\mathrm{L}^{-2} \mathrm{~T}\right]$	
$2 \cdot$	[$L^{2} \mathrm{~T}^{-1}$]	

INDEX.

Acceleration, dimensions of PAGE 175
Babinet, barometric formula of
FAGE 160
of gravity, formula for. 171
table of values of 169
Air, cubical expansion, specific heat, thermalconductivity, and weight of.172
Airy, Sir George, treatise cited. xcviii
Albrecht, Dr. Th., treatise cited. 1xxx
Algebraic formulas xiii-xy
Alignment curve lvi
Aluminum, linear expansion of. 170
Ampère, dimensions of 175
Angles, equivalents in arcs xviji
sum of, in spheroidal triangle lvii
Angular velocity, dimensions of 175
Annulus, circular, area of xxx
Antilogarithms, explanation of use of xcix
4-place table of. 26, 27
Appendix 171-175
Arcs, equivalents in angles xvii
of meridians and parallels. xlvi-1
table of lengths of meridional 78-80
table of lengths of parallel 8ı-83
table of time equivalents 162
Are xli
Area, of circle xxx
table of values of 23
of surface of earth 1-lii
Areas, of continents lxv
of oceans lxv
of plane and curved surfaces.. . . . xxix-xxxiof zones and quadrilaterals of theearth's surface1-lii
tables of values of 142-1 59
of regular polygons $x x x$
Arithmetic means, progression, and series. .xiii
Astronomical constants 172
co-ordinates lxvii
latitude xliv
time 1xxii
Astronomy lxvii-lxxxii
references to works on lxxxii
Atmosphere, mass of earth's. lxvi
standard pressure of 172
weight of unit of volume of. 172
Average error, definition of lxxxiv
Azimuth, astronomical and geodetic lvii
computation of differences of lviii-lxi
Barometer, heights by. 160
Binomial series xiv
Brass, linear expansion of. 170
Brünnow, F., treatise cited lxxxii
Bushel, Winchester. xxxy
equivalent in litresCable lengthXXXViij
Calorie, value of 172
Capacity, measures of, British.MetricCentare
Chauvenet, Wm., treatise cited. lxxxiixli
Circumference, of circle xxviii
table of values ofof earth..................................... 171
of ellipse. xix
C. G. S. system of units. xlii
Clarke, General A. R., spheroid of xliii
treatise cited. lxvi
Coefficient, of cubical expansion of air and
mercury 172
of linear expansion of metals. 170
of refraction |xiii
Compression, of earth xliii
Computation, of differences of latitude, lon-gitude, and azimuthlviii
of mean and probable errors $x \mathrm{x}$
Conductivity, thermal, of air 172
Cone, surface of xxxi
volume of xxxii
Constants, astronomical I72
geodetical. 171
numerical. 171
of earth's spheroid xliv
Continental measures (table of British andMetric equivalents)168
Continents, areas of. lxy
average heights of. lxy
Conversion, of arcs into angles and angles
into arcs xvii
of British and Metric units...2, 3, I73, 174
Co-ordinates, astronomical...................... x xvii
for projection of maps liii-lvi
table of, scale $1 / 250000$ 84-91
table of, scale $1 / 125000$ 92-101
Co-ordinates (continued).
table of, scale $1 / 126720$ 102-109
table of, scale $1 / 63360$ 110-121
table of, scale $\mathrm{I} / 200000$ 122-13I
table of, scale $1 / 80000$ 132-14I
of generating ellipse of earth's spheroid. .xliv
Copper, linear expansion of 170
Cord (of wood), volume of. xxxix
Correction, for astronomical refraction, tableof mean values of.161
to observed angle for eccentric position
of instrument lxiii
to reduce measured base to sea level...lxiv
Cosines, table of natural 28, 29
use of table explained
30, 3^{1}
Cotangents, table of natural
use of table explained c
Coulomb, dimensions of 175
Cubature, of volumes xxxii
Cubes, table of 4-22
Cube roots, table of 4-22
Cylinder, surface of xxxi
volume of. xxxii
Day, sidereal and solar lxxii, 172
Degrees, number of, in unit radius xviii
of terrestrial meridian xlvi, 166
of terrestrial parallel xlix, 167
Density, mean, of earth lxv
mean, of superficial strata of earth lxv
of mercury 172
Departures (and latitudes), table of. 32-47
mode of use of table explained
c
Depths, average, of oceans lxv
Determination, of azimuth lxxix
of heights, by barometer 160
by trigonometric leveling xi
of latitude lxxvii
of time lxxiv
Difference, between astronomical and geo- detic azimuthlvii
of heights, by barometer. 160
by trigonometric leveling 1xi
Differences, of latitude, longitude, and azi-muth, on earth's spheroidlviii
table for computation of 70-77
Differential formulas xxi
Dimensions, of earth xliii, 171
of physical quantities 175
Dip, of sea horizon. 1xiii
Distance, of sea horizon lxiii
of sun from earth 172
Doolittle, Prof. C. L., treatise cited. .lxxxii
Earth, compression of .xliii, 171
Earth (continued).
density of 1xv
dimensions of. xliii, 171
ellipticity of. xliii, 171
energy (of rotation) of. lxvi
equatorial perimeter of xliii, 171
flattening of xliii, 171
mass of xvi
meridian perimeter of xlix, 171
moments of inertia of lxvi
shape of xliii
surface area of ii
volume of. lxy
Eccentricity, of ellipse xliii
of earth's spheroid xliv, 171
El , value of 168
Electric quantities, dimensions of 175
Electro-magnetic quantities, dimensions of 175
Ellipse, area of xxx
equations to xliv
length of perimeter of xxix
Ellipsoid, volume of (see Spheroid) xxxiii
Ellipticity, of earth xliii, 171
Energy, dimensions of 175
of rotation of earth lxvi
Equations, of ellipse xliv
of Prototype Kilogrammes x]
of Prototype metres xl
Error, in ratio of English yard to Metre . .xxxvii
Errors, probable, mean, average . .lxxxiv, lxxxviiitable of, for interpolated quantities . . lxxxvitheory of. ...xiii
Everett, J. D., treatise cited xlii
Excess, spherical or spheroidal lviii
Expansion, cubical, for air and mercury 172
linear, of principal metals 170
Farad, dimensions of 175
Fathom, length of xxxviii
Swedish 168
Flattening, of earth xdiii, 171
Foot, Austrian 168
British xxxvii
French, Rhenish, Spanish, Swedish 168
Force, dimensions of 175
Formulas, algebraic xiii-xv
for differentiation xxi
for integration xxiii
for solution of plane triangles xviii
for solution of spherical triangles xx
trigonometric xv
Freezing point of mercury 172
Functions, trigonometric, of onc angle xy
of two angles xvi
special values of xv
values in series xvii

Gallon, British and wine.....................xxxviii Gauss's formulas for spherical triangles......xxi
Geocentric latitude xliv
Geodesy xliii-lxvi
references to works on lxvi
Geodetic azimuth lvii
Geodetic differences of latitude, longitude, and azimuth 1viii
Geodetic line 1vii
Geodetical constants 171
Geographical latitude xliv
Geographical positions, computation of.lviii-]xiGeoid, definition of.xliii
Geometric means, progression. xiii
Glass, linear expansion of 170, 172
Gold, linear expansion of 170
Gravity, acceleration of, formula for 171
table of values of 169
Gunter's chain, length of xxx viii
Harkness, Prof. Wm., memoir cited lxv, 169, 171, 172
Heat, dimensions of 175
latent, of liquefaction of ice. 172
of vaporization of water 172
mechanical equivalent of 172
Hectare $x l i$
Heights, average, of continents xv
determination of, by barometer 160
trigonometrically lxi
Helmert, Dr. F. R., treatise on geodesy cited lxvi
treatise on theory of errors cited xcviii
Horizon, dip of sea lxiii
Imperial pound and yard xxxiv
Integrals, definite xxvi
indefinite xxxiii
Interconversion, of English and Metric units .2, 3, 173, 174of sidereal and solar time
lxxiii
tables for. 164, 165
Iron, linear expansion of 170
Joule, value of 174
Kilogramme, Prototype xxxivequations of
wio
relation to pound xxxvi, xli
Kinetic energy, dimensions of 175
of rotation of earth lxvi
Klafter, Wiener, in terms of foot andmetre168

Latitude, astronomical, geocentric, and re-
\qquad
determination of lxxvii
Latitudes and departures, table of 32-47
mode of use of table explained
Lead, linear expansion of 170
Least squares, method of. lxxxvi
references to works on. xcviii
Legendre's theorem for solution of sphe-roidal triangleslvií
Length, of arc of meridian xlvi
of arc of parallel xlix
of equator of earth 171
of meridian circumference of earth 171
of perimeter of ellipse. xxix
of Prototype Metres Nos. 21 and 27......xl
of seconds pendulum, formula for 171
table of values of 169
Leveling, trigonometric xi
Line (French), value of , 68
Lines, lengths of. xxviii
on a spheroid lvi
Linear measures, British xxvii
Metric xli
tables for interconversion of 74
Litre xli
Logarithms, anti-, 4-place table of 26, 27
explanation of use of xcix
4-place table of common 24, 25
of natural numbers, table of 4-22
relations of different xv
series for xiv
Maclaurin's series xxii
example of. xxiii
Magnetic quantities, climensions of 175
Maps, co-ordinates for projection of (see
Co-ordinates for projection of maps) liii
projection of cii
Mass, of earth lxv
of earth's atmosphere lxvi
of Prototype Kilogrammes Nos. 4 and
of Prototype Kilogrammes Nos. 4 and 20 x]
Mayer's formula for transit instrument lxxy
Mean, arithmetic and geometric xiii
Mean distance of earth from sun 172
Mean error, definition of Ixxxiv
computation of xcv
Mean time Ixxii
table for conversion to sidereal time 164
Measures xxxiv
of capacity, British xxxviii
Metric xli
of length, British xxxvi
Continental 68
Metric xli

[^25]

Abstract

^[]

Abstract

Abstract

[^27]

[^28][^29]

[^30]

\begin{abstract}

Abstract

\end{abstract}

[^31]

Measures (continued).
of surface, Britishxxxviii
Metric xli
tables for interconversion of..2, 3, 173, 174
Mechanical equivalent of heat 172
Mechanical units, dimensions of 175
Mensuration xxviii-xxxiii
Mercury, density and cubical expansion of. . 172
Meridian, arcs of terrestrial xlvi
table of lengths of 78-80
circumference of earth x]ix, 171
Method of least squares lxxxvi
Metre, Prototype xxxiv
equations of Nos. 21 and 27 xl
relation to British yard xxxvi, xli
Metric system xl
Mile, Austrian 168
British (statute) xxxvii
Danish, German sea, Netherlands, Nor- wegian, Prussian, Swedish 168
Nautical 168
Modulus of common logarithms xv
Moivre's formula xvi
Moment of inertia of mass, dimensions of 175
Moments of inertia of earth lxvi
Momentum, dimensions of 175
Napierian base (of logarithms) xiv, 171
Napierian logarithms xiv
Napier's analogies xx
Natural logarithms xiv
Nautical mile, table of equivalents in statute miles 168
Numerical constants 171
Ohm, dimensions of 175
Palm, length of, English xxxviii
Netherlands 168
Parallel, arcs of terrestrial xlix
table of lengths of $.8 \mathrm{~m}-83$
Pendulum, length of seconds 171
table of lengths of 169
Perch (of masonry) volume of. xxxix
it erimeter, of circle. xxviii
of ellipse xxix
of regular polygon xviii, $x x x$
Physical constants 172
Physical geodesy, salient facts of 1xv
Physical quantities, dimensions of 175
Platinum, linear expansion of 170
Platinum iridium, linear expansion of 170
Polyconic projection of maps liii
graphical process of, explained cii
Polygons, regular, areas of xxx
lengths of lines of xxvii
Potential (electric), dimensions of 175
Pothenot's problem Ixiv
Pound, imperial, avoirdupois xxxiv
Power, dimensions of 175
Pressure, of atmosphere 172
Prism, volume of xxxii
Probable error, definition of lxxxiv
computation of xcy
Projection of maps liii, cii
Prototype Kilogrammes and Metres xxxiy
equations of x
Quadrilaterals, of earth's surface, areas of...... 1tables of areas of 142-1 59Quantity, of electricity, dimensions of....... 175Radii, of curvaturexlv
Radius of curvature, of meridian, table oflogarithms of48-56
of section normal to meridian, table of logarithms of 57-65
of section oblique to meridian, table of logarithms of.66,67
Radius vector of earth's surface 1
Rate of working (power), dimensions of.175
Ratio, of pound to kilogramme xxxvi
of specific heats of air 172
of yard to metre xxxvi
Reciprocals, of natural numbers, table of. .4-22
Reduced latitude. xliv
Reduction to sea level of measured base line. lxiv
References, to works on astronomy.......lxxxii
to works on geodesy lxvi
to works on the theory of errors. xcviii
Refraction, astronomical, table of $16 I$
example of computation of civ
coefficients of terrestrial xiii
Right ascension lxxii
Rode, Danish 168
Ruthe, Prussian, Norwegian 168
Sagene, Russian 168
Sea level (see Geoid), reduction of measuredbase line tolxiv
Sea surface, area of lxv
Secondary triangulation, differences of lati- tude, longitude, and azimuth in]x
Series, binomial xiv
logarithmic xiv
of Maclaurin and Taylor xxii
trigonometric xvii
Sidereal day and year, length of 172
Sidereal timelxxii
table for conversion to mean time.. 165
Signs, of trigonometric functions xy
Silver, linear expansion of 170
Sines, table of natural 28, 29
explanation of use of
lxxii
Solar time
table for conversion of mean solar to sidereal 164
Solution, of plane triangles xviii
of spherical triangles xx
of spheroidal triangles. lvii
Span, length of xxxviii
Specific heat of air 172
Sphere, equal in surface with earth lii
equal in volume with earth lii
surface of xxxi
volume of xxxii
Spherical excess (see Spheroidal excess) lviii
Spheroid, representing the earth xliii
surface of xxxi
volume of xxxiii
volume of earth's 1xy
Spheroidal excess lviii
example of computation of. ci
Spheroidal triangle lvii
Square roots, table of 4-22
Squares, table of 4-22
Standards, of length and mass xxxiv
Steel, linear expansion of 170
Stère xli
Stress, dimensions of 175
units of 173, 174
Sums, of arithmetic and geometric progres- sion, and special series xiii
Surfaces (see Areas) xxix
Surface measures, British xxxviii
Metric xli
tables for interconversion of. ..2, 3, 173, 17
Surface, of continents lxv
of earth's spheroid iii
of oceans lxv
of sphere and spheroid xxxi
Surveyor's chain, length of xxxviii
Table for conversion of arc into time 162
conversion of mean into sidereal time 164
conversion of sidereal into mean time 165
conversion of time into arc 163interconversion of British and Metricunits.......................2, 3, 173, 174interconversion of nautical and statutemiles168
Table of acceleration of gravity and derived quantities

Table of (continued).
antilogarithms, 4-place26, 27
areas of quadrilaterals of earth's surface of 10° extent in latitude and longitude
. 142
1° extent in latitude and longi-
tude.......................... I44, 145
30^{\prime} extent in latitude and longi-
tude..........................146-148
15^{\prime} extent in latitude and longi-
tude.........................150-154
10^{\prime} extent in latitude and longitude.

156-159
areas of regular polygons..............xxx
circumference and area of circle......... 23
constants, astronomical................... ${ }^{172}$
geodetical.....................................
numerical................................ 171
for interconversion of English and
Metric units2, 3, 173, 17
Continental measures of length......... 68
co-ordinates for projection of maps -
scale $1 / 250000$. . $84-91$
scale $1 / 125000$. 92 -101

scale $1 / 63360110-121$
scale $1 / 200000$. . 122 -131

departures and latitudes.............32-47
dimensions of physical quantities...... 175
errors of interpolated values from nu-
merical tables........................lxxxvi
expansions (linear) of principal metals. . 170
formulas for solution of plane triangles. . xix
fractional change in number due to
change in its logarithm
.170
latitudes and departures32-47
lengths of arcs of meridian...........78-80
of arcs of parallel................81-83
of 1° of meridian. 166
of 1° of parallel...................... 167
linear expansions of metals170
logarithms, 4-place....................24, 25
anti, 4-place......................26, 27
of factors for computing spheroidal excess . 68, 69
of factors for computing differences of latitude, longitude, and azi-muth..........................70-77
of meridian radius of curvature. . 48-55 of radius of curvature of normal section. 56-65
of radius of curvature of oblique sections 66, 67
mean astronomical refraction161
measures and weights -
British, of capacity.
.xxxix
Table of (continued).
British, of length xxxviii
British, of surface xxxviii
British, of weight xxxix
Metric xli
tables for interconversion of 2, 3, 173, 174
natural cosines 28, 29
natural tangents 30, 3^{1}
radii of curvature, logarithms of, for
meridian section 48~55
for normal section 56-65
for oblique section 66, 67
reciprocals, squares, cubes, square roots,cube roots, and logarithms of naturalnumbers4-22
refraction, mean astronomical 16I
signs of trigonometrical functions. xv
values for computing areas and dimen-
sions of regular polygons xxx
for computing perimeter of ellipse xxixof $\log \frac{1}{2}(1-2 m)$ and $\log (1-m)$used in trigonometric leveling . . . lxiiweights and measures (see Table ofmeasures and weights)2, 3, 173, 174
Table, traverse (see Traverse table).......32-47
Tangents, natural, table of 30, 31
use of table explained C
Taschenbuch, Des Ingenieurs xcix
Taylor's series xxii
Temperature, absolute zero of 172
of freezing mercury 172
Theory of errors xxxxiii-xcvii
references to works on xcviii
Thermal conductivity, dimensions of 175
of air 172
Three-point problem lxiv
Time, determination of lxxiv
equivalents in arc, table of 163
example of use of table civ
interconversion of sidereal and solar,tables for164, 165
Tin, linear expansion of 170
Toise, value in feet and metres 168
Ton, long and short xxxix
Tonne 173, 174
Tonneau xli
Trapezoid, area of xxix
Traverse table 32-47
explanation of use of c
Triangles, plane, solution of xviii
Triangles (continued)spherical, solution of x x
spheroidal, solution of lvii
Triangulation, primary and secondary, differ-ences of latitude, longitude, and azimuth
in.Trigonometric functions, of one anglexv
of two angles. xvi
series for xvii
Trigonometric leveling lxi
Units, British System xxxvii
C. G. S. System x lii
Metric System xl
standards of length and mass. xxxiy
tables for interconversion of British and
Metric 3, 173, 174
Useful formulas xiii-xxvii
Vara, Mexican and Spanish 168
Velocity, dimensions of 175
of light and sound 172
Versta, Russian 168
Vertical section curve on spheroid. lvi
Volt, dimensions of 175
Volume, of earth 1xv
of solids xxxii
Weight, of distilled water 172
Weights and measures (see Measures andweights), tables for interconversion ofBritish and Metric2, 3, 173, 174
Werst, Russian 168
Work, dimensions of 175
Wright, Prof. T. W., treatise cited xcviii
Yard, imperial xxxiv
ratio of, to metre xxxvi, xxxvii
Zachariae, G., treatise cited $x 1 v i$
Zenith distances, use of, in trigonometric leveling $1 x i$
Zenith telescope, use of. lxxix
Zero, of absolute temperature 172
Zinc, linear expansion of 170
Zones, of earth's surface, area of 1

[^0]: Smithsonian Institution, Washington City, October 30, 1897.

[^1]: * Bulletin 26, U. S. Coast and Geodetic Survey. Washington : Government Printing Office, 1893. Published here by permission of Dr. T. C. Mendenhall, Superintendent Coast and Geodetic Survey.

[^2]: * Note. - Reference to the Act of 1866 results in the establishment of the following : -

[^3]: * The actual error of the relation of the yard to the metre may be as great as $1 / 200000$ th part, and the actual error of the relation of the pound to the kilogramme as great as $1 / 100000 \mathrm{th}^{\text {part. }}$

[^4]: ${ }^{*} c_{1}, c_{2}, c_{8}$ are obtained from C_{1}, C_{2}, C_{8} respectively by dividing the latter by the number of degrees in the radius, viz: 57.29578 .

[^5]: * For the solution of very large triangles and for a full treatment of the theory thereof, consult Die Mathematischen und Physikalischen Theorieen der Höheren Geodüsie, von Dr. F. R. Helmert. Leipzig, 1880, 1884.

[^6]: * The mass of the earth's atmosphere is about one-millionth part of the entire mass, or about 66×10^{14} tons.
 \dagger The values of A and C are those given by Harkness, loc. cit., but they are here abridged to three places of decimals.

[^7]: * The best treatise on the theory and use of this instrument is to be found in Chauvenet's Manual of Spherical and Practical Astronomy, which should be consulted by one desiring to go into the details of the subject.
 t Other equivalent constants may be used, but those given are most commonly employed.

[^8]: * For details of theory and practice in time work done according to this plan see Bulletin 49. U. S. Geological Survey.

[^9]: * The best work of this kind is Chaurenet's Manual of Spherical and Practical Astronomy. It should be consulted by all persons desiring a knowledge of the details of practical astronomy.

[^10]: * Among which Chauvenet's Manual of Spherical and Practical Astronomy is the best.

[^11]: * In precise work the computed azimuth requires the following correction for daily aberration, namely:-

 $$
 \Delta A=-0 .{ }^{\prime \prime} 32 \frac{\cos \phi}{\sin z} \cos A
 $$

 where A is to be reckoned from the south by way of the west through 360°.

[^12]: * The reader should observe that the word probable is here used in a specially technical sense. Thus, the probable error is not "the most probable error," nor " the most probable value of the actual error," etc., as commonly interpreted.

[^13]: * For the theory of the errors of this species of interpolated values see Annals of Mathematics, vol. ii. pp. 54-59.

[^14]: * Hence the term least squares,

[^15]: * The middle ground between these extremes has been little explored; indeed, most practical applications fall at one or the other of the extremes.

[^16]: * Since the probable error is 0.6745 times the mean error the latter only need be considered.

[^17]: * Berlin: Verlag von Ernst \& Korn. This work is an invaluable one to the engineer, architect, geographer, etc.

[^18]: * The meridional distances and the abscissas of the points on the developed parallels in Fig. 4 are one twentieth of the true or tabular values. The ordinates of points on the developed parallels are the tabular values.

[^19]: * It should be noted that $C N$ is not equal to $E V, N$ and V referring here to points on the developed parallels.
 \dagger Comftes Rendus, Paris, 1850, vol. xxv. p. 309.

[^20]: * It should be observed that the metric values given in these tables depend on Clarke's value of the ratio of the yard to the metre, which is now known to be erroneous by about the $1 / 100000$ th part.

[^21]: * Washington, Government Printing Office, 1891.

[^22]: Smithsonian Tables．

[^23]: Smithsonian Tagleg.

[^24]: Smithsonian Tables.

[^25]:

[^27]:

[^28]:

[^29]:

[^30]:

[^31]:

